Меню

Водяное охлаждение компьютера слив воды

Водяная система охлаждения для процессора

Идея использовать жидкость для охлаждения электронных компонентов появилась очень давно. В персональных компьютерах (ПК) она не была актуальной достаточно долгое время, пока мощности электронных компонентов были невелики.

Однако, с появлением уже центральных процессоров (ЦП) с частотами порядка сотен МГц и видеокарт с тепловыделением в десятки, а то и сотни ватт, актуальность применения систем жидкостного охлаждения снова обрела смысл.

Эффективное охлаждение, которое обеспечивает система с жидким хладагентом гораздо лучше, чем воздушное охлаждение. Связано это, в первую очередь с тем, что в отличие от систем воздушного охлаждения, где отвод тепла от процессора и его рассеивание производится внутри корпуса ПК, водяное охлаждение разбивает ту же техническую задачу на две составляющих.

При этом отвод тепла производится в водоблоке, установленном на процессоре, а его рассеивание осуществляется на радиаторе, вынесенном за пределы корпуса ПК. При этом нет необходимости в установке внутри корпуса габаритных радиаторов и мощных вентиляторов, поскольку все это вынесено за пределы корпуса.

В этом случае размер рассеивателя, а также скорость вращения обдувающих его вентиляторов может быть, в принципе, любой. Таким образом, решатся основная проблема охлаждения: благодаря жидкому хладагенту, можно получить охлаждение практически любой мощности с минимальным уровнем шума. Да, его габариты могут быть очень большими, но они не ограничиваются размерами корпуса ПК.

В настоящее время наиболее популярными являются системы водяного охлаждения (СВО), поскольку в них используется обычная дистиллированная вода, оказавшаяся по совокупности параметров самым оптимальным хладагентом для компонентов ПК.

Преимущества и недостатки систем жидкостного охлаждения

Водяное охлаждение для процессора обладает следующим преимуществами:

  • высокая эффективность;
  • тишина в работе;
  • свободное пространство внутри корпуса;
  • отсутствие запыленности внутри ПК;
  • взаимозаменяемость компонентов и полная свобода действий при модернизации охлаждения (например, можно увеличить производительность системы, поставив не один скоростной и шумный вентилятор, а три, работающих на меньшей скорости, но обеспечивающих такой же поток воздуха с минимальным уровнем шума).

Но любая медаль имеет две стороны. К недостаткам СВО можно отнести:

  • долгое время самостоятельной сборки СВО;
  • потенциальная опасность при её эксплуатации (случаи могут быть самые разнообразные: пролив хладагента, заклинивание помпы, недостаточная мощность обдува радиатора и т.д.);
  • проблемы с совместимостью компонентов и поиском необходимых водоблоков;
  • высокая стоимость СВО в целом.

Установка охладителя

Сборка и проектирование вашей системы начинается с выбора охладителей или водоблоков – приспособлений, которые будет крепиться непосредственно к нагревающимся компонентам ПК – центральному процессору, чипсету и процессору видеокарты. Они должны быть не только необходимых размеров, но также должны соответствовать отводимой мощности и иметь правильное расположение крепежа, учитывающие посадочные места на материнке и плате видеокарты.

Уже на этом этапе необходимо определиться с конструкцией всей системы в целом: типе и рассеиваемой мощности радиатора, скорости течения хладагента, мощности помпы и способе отвода хладагента за пределы корпуса. Здесь возникает масса технических вопросов, главный из которых – величина рассеиваемой на радиаторе мощности.

Важно! Мощность, рассеиваемая радиатором должна быть примерно на 20% больше суммарной мощности, «собираемой» с нагревающихся компонентов водоблоками. Необходимо посмотреть документацию на процессор, видеокарту и материнку, чтобы узнать максимальную выделяемую этими устройствами тепловую мощность. И уже, исходя из этой величины, выбрать соответствующий радиатор.

Инструменты для работы

Для сборки компонентов системы охлаждения понадобятся следующие инструменты:

  • отвёртка для крепления водоблоков к нагревающимся элементам;
  • гаечный ключ для подключения фитингов к водоблокам;
  • специальные ножницы для резки трубок, по которым будет двигаться хладагент;
  • плоскогубцы для крепления хомутами трубок к фитингам.

Фитинги – это своеобразные переходники между водоблоком и трубкой с хладагентом. Они жестко прикручиваются к охладителю одним концом, а на второй их конец надеваются трубки, затягивающиеся хомутами.

Установка охладителя на ЦП

Пожалуй, самый простой этап сборки СВО – это её установка на процессор. Водоблоки для процессора обладают стандартными размерами и точками крепления, соответствующими тому или иному типу сокета. Необходимо просто смазать поверхность процессора термопастой, установить на него водоблок и зафиксировать его при помощи болтов и отвёртки. После чего к водоблоку прикручиваются два фитинга.

Установка охладителя на видеокарту

В целом, эта процедура повторяет то, что делалось на центральном процессоре, с той лишь разницей, что охладитель видеокарты должен иметь хороший контакт не только с её процессором, но и с памятью и системой её электропитания – примерно десятком полевых транзисторов, называющихся также мосфетами.

Обычно, такие охладители выпускаются под конкретную модель видеокарты и их площадь покрывает все необходимые элементы, нуждающиеся в охлаждении. Процессор непосредственно контактирует с охладителем через тонкий слой термопасты, а чипы памяти и мосфеты получают тепловой контакт благодаря специальной термопрокладке, идущей в комплекте с водоблоком.

Установка насоса

Насос для подачи хладагента или помпа устанавливается одновременно с расширительным бачком или резервуаром. Резервуар необходим для обеспечения термического расширения охлаждающей жидкости и для содержания в себе её некоторого запаса. Оба компонента располагаются внутри корпуса. Никаких особенностей или нюансов монтажа при этом нет. Главное – надёжное крепление всей конструкции внутри корпуса.

Соединение шлангами

Когда будут установлены все компоненты внутри корпуса ПК, их соединяют шлангами. Предварительно необходимо при помощи ножниц нарезать шланги нужной длины. И здесь есть определённая сложность, заключающаяся в правильной последовательности соединения компонентов. Хладагент начинает своё движение от помпы к охлаждающимся компонентам, от менее горячего к более горячему.

Важно! Учитывая, что тепловыделение процессора составляет 40-150 ватт, видеокарты – 100-300 ватт, а чипсета не более 50 ватт, последовательность движения охлаждающей жидкости должна быть следующей: помпа – чипсет – процессор – видеокарта.

Шланги присоединяются к фитингам при помощи хомутов. Выход трубки с видеокарты присоединяется к одному из фитингов приспособления, выводящего хладагент из корпуса к рассеивателю. Второй фитинг этого приспособления замыкает круг СВО в корпусе, подключением шланга к оставшемуся фитингу помпы.

Подготовка насоса к работе

Подготовка насоса к работе заключается в подключении к нему электропитания напряжением в +12 В от источника питания при помощи предусмотренного конструкцией разъёма.

Установка радиатора

Радиатор может устанавливаться как на крышке корпуса, так и на его задней панели. В некоторых системах жидкостного охлаждения он располагается рядом с корпусом.

Крепление радиатора

Крепление может быть выполнено самым разнообразным способом. Обычно, к каждому радиатору идёт набор различных конструкций и переходников для его адаптации под любой из существующих корпусов.

После установки радиатора необходимо подключить его к двум фитингам переходника, выходящим из системного блока – тому, который приходит с видеокарты и тому, который идёт на помпу.

Питание радиатора

Питание радиатора осуществляется от напряжения +12 В, также подводимого от источника питания через специальный переходник в заглушке на задней панели корпуса.

Наполнение водой

Наполнение водой СВО производится при выключенном питании ПК. То есть, блок питания будет подключён только к помпе и радиатору, питание от материнки должно быть отключено. Заливка воды в СВО производится в её самой высокой точке – специальной горловине, расположенной на радиаторе. Как только жидкость зальёт весь объём системы, необходимо запустить помпу и прокачать хладагент по всему маршруту, чтобы избавиться от воздушных пузырьков. После чего система герметично закрывается, подключается питание материнки и ПК готов к включению.

Читайте также:  Как подключать слив посудомойки

Особенности демонтажа

Демонтаж системы начинается со слива из неё охлаждающей жидкости. Это необходимо делать из самой нижней точки – одного из фитингов помпы. Для того, чтобы сделать это без проблем, ещё на этапе проектирования системы жидкостного охлаждения необходимо предусмотреть специальное отведение с краном, который закрыт при нормальной работе охлаждения, а открывается только для слива хладагента.

После того, как жидкость слита, начинается демонтаж системы: снимаем вначале внешний радиатор, затем отсоединяем все шланги и снимаем водоблоки с их посадочных мест (процессора, чипсета, видеокарты). Перед тем, как снять с процессора видеокарты водоблок, саму видеокарту желательно вынуть из корпуса, чтобы не повредить компоненты на ней при отклеивании термопрокладок.

Источник

Небольшой FAQ по водяному охлаждению

Теплопроводность металлов и других веществ :

Ответы на вопросы уже решенные в этой ветке:

№ 1 Антифриз (Тосол) нужен:
1. Если в системе жидкостного охлаждения присутствует железо/чугун или коррозирующие металлы;
2. Если на систему (жидкость) попадают солнечные лучи или достаточное кол-во дневного света;
3. Если t жидкости в системе ниже 5’C.
4. Не рекомендуется добавление спирта \ водки
Во всех других случаях ПРЕДПОЧТИТЕЛЬНЕЙ использовать дистиллированную/очищенную воду.

№ 2 Если радиатор или бачёк поставить выше контура СВО, приведёт ли это к падению производительности помпы
Помпа не перекачивает воду снизу вверх, например из ведра на полу в таз на столе. Радиатор стоит в замкнутом контуре. Сколько воды толкается вверх, столько же и сливается вниз, помогая помпе эту воду прокачивать. Задача помпы создавать движение воды в системе с достаточным напором.

№ 3 Большая скорость жидкости не нужна. Она быстро заберет тепло в ватерблоке, это хорошо. Но она также не успеет толком охлаждаться в радиаторе, так как слишком быстро будет через него проходить.
Физический закон обратим. Если вода быстро забирает тепло, то она отдает его с той же скоростью. Притом вода находится одинаковое время в ватерблоках и радиаторе независимо от расхода. Давайте рассмотрим это на примере.
У нас имеется контур, где 5% жидкости находится в ватерблоке, 40% в радиаторе, а остальная жидкость — в шлангах, бачке и т.д. Помпа выключена, расход нулевой. Теперь включаем помпу и пусть она прокачивает через контур 300 л/ч. Все еще 5% воды находится в ватерблоке и 40% в радиаторе, и это соотношение не изменится никогда. Теперь пусть помпа начнет прокачивать через контур 600 л/ч вместо 300л/ч. Скорость жидкости увеличилось в 2 раза, она в 2 раза быстрее проходит через ватерблок и через радиатор, но скорость теплопередачи как физическая величина неизменна. Во втором случае вода хоть и течет в 2 раза быстрее, но и «кругов» по контуру сделает в 2 раза больше. Тем самым достигается равновесие. Расход в контуре на количество переносимого и рассеиваемого тепла не влияет. СВО рассеет столько тепла, сколько ей обеспечат процессор, видеокарта и т.д. Расход (но, не только он один) определит только конечную температуру «точек» охлаждения.

Доплнение: Ламинарное течение
(от лат. lamina — пластинка), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдаются или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров.

Турбулентное течение
(от лат. turbulentus — бурный, беспорядочный), форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.

Применительно к нашей теме можно сказать, что отличия между этими двумя типами в том, что в «ламинарных» ватерблоках сопротивление току вода ниже, а значит его скорость выше. Это приводит к тому, что вода очень быстро проходит свой путь между входным и выходным штуцерами. Поэтому большая часть поверхности ватерблока омывается водой низкой температуры. В противовес этому достоинству есть и недостаток. Он кроется в том, что теплопроводность воды в отличии от её теплоемкости очень низкая и поток, который непосредственно соприкасается с поверхностью блока быстро нагревается и теплообмен между медью и водой прекращается. При этом нижние пограничные слои воды не успевают передать тепло верхним.

Турбулентный же поток является антиподом ламинарного, он за счет завихрений и перемешивания воды более равномерно распределяет тепло внутри потока, но его скорость ниже, чем у ламинарного за счет большего сопротивления внутренней структуры блока, создающего завихрения.

Источник

Водяное охлаждение и почему оно вам не нужно

Я кITейка, и я не боюсь воды. Нет, серьезно, последние 7 лет мой домашний ПК охлаждается водой, и эта статья про то, почему вам не нужно водяное охлаждение.

Краткая история водяного охлаждения

Водяное охлаждение персональных компьютеров применяется с незапамятных времен, когда энтузиасты пытались выжать последнее из своих доисторических процессоров и видеокарт и собирали на коленке системы из самодельных водоблоков, помп от аквариумов для рыб и шлангов от всего, что плохо лежит.

Разумеется, со временем такие системы становились все более продуманными, на рынке появились фирмы, вытачивающие на профессиональном оборудовании водоблоки, и водяное охлаждение перетекло из сферы энтузиастов в сферу дорогих ПК. Скажем так, рынок водяного охлаждения стал элитным — немногие были готовы выложить стоимость второго, а иногда и третьего компьютера за систему жидкостного охлаждения. Кроме того, самостоятельная сборка полностью кастомного контура представляла нетривиальную задачу, которая могла при небрежном подходе унести на тот свет все комплектующие.

Затем мы стали свидетелями того, как на рынок вышли закрытые системы водяного охлаждения, которые уже были рассчитаны на более массового пользователя и не требовали высокого уровня навыков.

В данный же момент, мы с вами можем видеть, как заполняется промежуточная ниша между кастомными и закрытыми СВО: на рынке становится все больше готовых комплектов и даже серий, которые позволяют выбрать, что будет охлаждаться и предлагают полную совместимость всех частей комплекта, тем самым значительно упрощая процесс сборки.

Мой опыт использования водяного охлаждения

Не буду здесь во всех подробностях описывать все то, с чем я работал, это тема для целой статьи, да и не совсем понятно, насколько эта тема интересна вам, читателям. Скажу лишь только, что в моем компьютере побывали три полностью кастомные системы, две из которых были на акриловых трубках. Закрытые системы несколько раз попадали в мои руки в рамках работы.

Почему я не рекомендую вам водяное охлаждение?

Если вы ожидаете здесь увидеть самый избитый аргумент о том, что оно может потечь, то я вас разочарую, его здесь не будет.

Читайте также:  Green mama уход за ногтями и кутикулой слива и лимон

Про закрытые СВО :

Производительность — только недавно топовые закрытые системы водяного охлаждения смогли обойти воздушные суперкулеры по производительности, при этом отрываясь на 2-4 градуса в зависимости от внешних факторов. Крайне редко такая разница будет иметь значение в домашнем использовании, хотя бы потому, что суперкулер изначально будет удерживать процессор в разумных тепловых рамках, не на пределе максимальной температуры.

Уровень шума — в целом, система водяного охлаждения должна быть тише, но при условии, что производитель оснастил ее хорошими вентиляторами и помпой. С вентиляторами обычно все хорошо, а вот помпы обычно устанавливаются компромиссные: скажем так, размер помпы D5, которая применяется в кастомных СВО, сопоставим с размером комбинации водоблок+помпа, который используют производители закрытых систем. Для того, чтобы получить приемлемый уровень производительности, скорость вращения импеллера должна быть очень высокой, что вызывает шум. В итоге мы имеем шаткий баланс: если СВО тихая, она далека по производительности от супербашни, а если она производительная, то уровень шума может оказаться ощутимым.

Цена — пожалуй, самый большой минус. Стоимость комплекта СВО в два, а то и в три раза, выше стоимости суперкулера при спорных преимуществах.

Надежность — частенько попадаются в сети отзывы о том, что перестала работать помпа, выпал осадок и забил микроканалы водоблока.

Про кастомные СВО :

Цена — она огромна, за эти деньги вы сможете купить себе еще один компьютер. Более того, стоимость ошибки также повышается. Например, можно винтом от крепления вентилятора повредить радиатор, что потребует либо дорогостоящего ремонта, либо его замены.

Совместимость — хотя количество стандартов сейчас и уменьшилось, существует вероятность того, что при подборе компонентов вкрадется какая-то ошибка и где-нибудь не совпадет размер фитинга, шланга, крепления вентилятора к радиатору. Также существует целый ряд несовместимостей: металлов, хладагентов, хладагентов и определенных видов трубок\шлангов и т.д.

Обслуживание — как бы хорошо ни была собрана СВО, она требует обслуживания. В лучшем случае раз в полтора-два года потребуется менять хладагент, который за это время мог потерять свои свойства или того хуже, обзавестись новой жизнью. В идеальном случае потребуется слить старый хладагент, промыть, залить новый. Если обнаружатся следы коррозии, цветения или выпадения осадка, придется разбирать всю систему, проверять микроканалы в водоблоках, прочищать их, возможно, менять.

На размышление

Я думаю вы сами для себя можете решить, хотите вы видеть у себя в ПК водяное охлаждение или нет. На мой взгляд, вместо закрытой СВО лучше вложиться во что-нибудь еще — вы сэкономите себе и деньги, и нервы в дальнейшем. Кастомное СВО, в свою очередь, это ни в коем случае не система охлаждения. Это либо предмет вашего интереса, в котором вам интересно копаться, что-то менять, пересобирать (как это со мной), либо предмет интерьера, который украшает ваше рабочее пространство.

Источник

Как выбрать систему жидкостного охлаждения

Что такое система жидкостного (водяного) охлаждения и зачем она нужна.

Хорошее охлаждение центрального процессора и процессора видеокарты последние десятилетия является необходимым условием их бесперебойной работы. Но греются в компьютере не только процессор и видеокарта — отдельный кулер может потребоваться микросхеме чипсета, жестким дискам и даже модулям памяти. Производители корпусов добавляют дополнительные вентиляторы, увеличивают их мощность и габариты, улучшают устройство радиаторов. И, разумеется, жидкостные системы охлаждения не могли быть обойдены вниманием.

Вообще, жидкостное охлаждение процессоров – тема не новая: оверклокеры столкнулись с недостаточной эффективностью воздушного охлаждения уже давно. «Разогнанные» до теоретического максимума процессоры грелись так, что не справлялись никакие из имевшихся тогда в продаже кулеров. Систем жидкостного охлаждения в магазинах не было, и оверклокерские форумы полнились темами о самодельных «водянках». И сегодня многие ресурсы предлагают собрать систему жидкостного охлаждения самостоятельно, но смысла в этом уже немного. Стоимость комплектующих сравнима с ценой недорогих СЖО в магазинах, а качество (и, следовательно, надежность) заводской сборки обычно все же выше кустарной.

Почему эффективность СЖО выше, чем у простого кулера?

Рассматриваемые СЖО не имеют вырабатывающих холод элементов, охлаждение происходит за счет воздуха возле системного блока – как и в случае обычного воздушного охлаждения. Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора. Но скорость теплоотвода зависит не только от скорости движения теплоносителя, но и от эффективности охлаждения этой жидкости и от эффективности её нагревания теплом процессора. И, если первая задача решается увеличением площади радиатора, площади теплообменника радиатора и улучшением воздухообдува, то во втором случае теплообмен ограничен площадью процессора. Поэтому общая эффективность системы ограничивается эффективностью водоблока процессора. Но даже с таким ограничением СЖО обеспечивают примерно в 3 раза лучший теплосъем по сравнению с обычным воздушным охлаждением. В числах это означает снижение температуры чипа на 15-25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

Конструкция СЖО

Любая система жидкостного охлаждения содержит следующие элементы:

Водоблок. Его назначение – эффективно снимать тепло с процессора и передавать протекающей воде. Соответственно, чем выше теплопроводность материала, из которого изготовлены подошва и теплообменник водоблока, тем выше и эффективность этого элемента. Но теплопередача также зависит и от площади соприкосновения теплоносителя и радиатора – поэтому конструкция водоблока важна ничуть не меньше материала.

Плоскодонный водоблок Водоблок с игольчатым дном Водоблок со змеевидным теплообменником

Поэтому плоскодонный (бесканальный) водоблок, в котором жидкость просто протекает вдоль стенки, прилегающей к процессору, намного менее эффективен, чем водоблоки со сложной структурой дна или теплообменниками (трубчатыми или змеевидными). Минусами водоблоков со сложной структурой является то, что они создают намного большее сопротивление водяному потоку и, следовательно, требуют более мощной помпы.

Помпа. Распространенное мнение, что чем мощнее помпа, тем лучше и что СЖО без отдельной мощной помпы вообще неэффективна – некорректно. Функция помпы – обеспечить циркуляцию теплоносителя с такой скоростью, чтобы перепад температур между теплообменником водоблока и жидкостью был максимальным. Т.е., с одной стороны, нагревшаяся жидкость должна вовремя выводиться из водоблока, с другой стороны – поступать в водоблок она должна уже полностью охлажденной. Поэтому мощность помпы должна быть сбалансирована с эффективностью остальных элементов системы и замена помпы на более мощную в большинстве случаев не даст положительного эффекта. Маломощные помпы часто объединены в одном корпусе с водоблоком.

— Радиатор. Назначение радиатора – рассеивать тепло, приносимое теплоносителем. Соответственно, он должен быть изготовлен из материала с высокой теплопроводностью, обладать большой площадью и быть укомплектован мощным вентилятором (вентиляторами). Если площадь радиатора СЖО сравнима с площадью радиатора процессорного кулера и вентилятор на ней установлен ничуть не мощнее, то не стоит ожидать от такой СЖО эффективности, превышающей эффективность того же кулера.

— Соединительные трубки должны быть достаточной толщины, чтобы не создавать большого сопротивления водяному потоку. По этой причине обычно используются трубки диаметром от 6 до 13 мм – в зависимости от скорости потока жидкости. В качестве материала трубок обычно используется ПВХ или силикон.

Читайте также:  Договорные матчи слив информации

— Теплоноситель должен иметь высокую теплоемкость и высокую теплопроводность. Из доступных и безопасных жидкостей лучше всего этим условиям удовлетворяет обычная дистиллированная вода. Часто в воду добавляются присадки для снижения её коррозирующих свойств, для предотвращения размножения микроорганизмов (зацветания) и просто для эстетического эффекта (цветные присадки в системах с прозрачными трубками).

В мощных системах с большим объемом теплоносителя становится необходимым использование расширительного бачка – резервуара, в который будут уходить излишки жидкости при её термическом расширении. В таких системах помпа обычно объединяется с расширительным бачком.

Характеристики систем жидкостного охлаждения.

Обслуживаемая/необслуживаемая СЖО.

Необслуживаемая система идет с завода полностью в сборе, залитая теплоносителем и загерметизированная. Установка такой системы отличается простотой – некоторые необслуживаемые СЖО установить ничуть не сложнее, чем обычный кулер. Минусы у необслуживаемой СЖО тоже есть:

— Низкая ремонтопригодность. Трубки часто просто запаяны в неразъемные пластиковые штуцеры. С одной стороны, это обеспечивает герметичность, с другой стороны, замена поврежденного элемента такой системы может вызвать осложнения.

— Сложность замены теплоносителя обычно тоже связана с ремонтом системы – если часть жидкости вытекла, снова заполнить необслуживаемую СЖО может оказаться весьма непросто – заливочными отверстиями такие системы, как правило, не снабжаются.

— Низкая универсальность связана с неразборностью системы. Невозможно ни расширить систему, ни заменить какой-либо из её элементов на более эффективный.

— Фиксированная длина трубок ограничивает возможности по выбору места установки радиатора.

Обслуживаемые СЖО часто поставляются в виде набора элементов и установка такой системы потребует времени и некоторой сноровки. Зато и возможности по её кастомизации намного выше – можно добавлять водоблоки для чипсета и для видеокарты, менять все элементы на более подходящие для конкретного компьютера, выносить радиатор на любое (разумное) расстояние от процессора и т.д. Можно не бояться устаревания сокета (и системы охлаждения) при замене материнской платы – для восстановления актуальности потребуется только заменить водоблок процессора. К недостаткам обслуживаемых СЖО, кроме сложности установки и высокой цены, следует отнести большую вероятность протечек через разъемные соединения и большую вероятность загрязнения теплоносителя.

СЖО должна поддерживать сокетматеринской платы, на которую устанавливается. И если обслуживаемую СЖО еще можно приспособить под другой сокет, купив дополнительно соответствующий водоблок, то необслуживаемая СЖО может использоваться только с теми сокетами, что перечислены в её характеристиках.

Количество вентиляторовне оказывает прямого влияния на эффективность СЖО , но большое их количество позволяет снизить скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при сохранении эффективности. Будет ли СВО с большим количеством вентиляторов эффективнее – зависит от их суммарного максимального воздушного потока.

Максимальный воздушный поток считается в кубических футах в минуту (CFM) и определяет, какой объем воздуха прогоняется через вентилятор в минуту. Чем выше это значение, тем выше вклад этого вентилятора в эффективность радиатора. Размеры (длина, ширина, толщина) радиатора ничуть не менее важны – четыре мощнейших вентилятора, обдувающих простой тонкий радиатор с малой площадью пластин будут охлаждать теплоноситель ничуть не лучше, чем один вентилятор, хорошо подобранный к радиатору с большой площадью пластин.

Материал радиатора определяет его теплопроводность, т.е., с какой скоростью переданное ему тепло будет распределяться по всей площади радиатора. Теплопроводность меди почти в два раза выше, чем теплопроводность алюминия, но в данном случае эффективность радиатора больше зависит от его конструкции и площади, чем от материала..

Материал водоблока, в силу ограниченности его размеров, важнее материала радиатора. Фактически, медь является единственным приемлемым вариантом. Алюминиевые водоблоки (встречающиеся в дешевых СЖО) снижают эффективность системы настолько, что пропадает смысл использования жидкостного охлаждения.

Максимальный уровень шума зависит от максимальной частоты вращения вентиляторов. Если в системе не предусмотрена регулировка частоты вращения, на этот параметр следует обратить пристальное внимание. При наличии регулировки частоты вращения, внимание следует обратить на минимальный уровень шума.

Уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении — негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.

Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.

Тип коннектора питания может быть 3-pin и 4-pin.

3-pin коннектор не имеет отдельного провода для изменения скорости вращения вентилятора. Управлять скоростью вращения такого вентилятора можно только изменяя его напряжение питания. Не все материнские платы поддерживают этот способ. Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать реобас.

4-pin коннектор предполагает управление скоростью вращения двигателей с помощью широтно-импульсной модуляции (ШИМ). При этом питание подается полное — 12 вольт – но не постоянно, а импульсами, меняя продолжительность которых, можно очень точно задавать частоту вращения двигателей. Кроме того, при таком способе нет ограничения на минимальную скорость вращения – регулируемый таким способом двигатель может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа – он сложнее в реализации, а следовательно, дороже.

Наличие подсветки и прозрачные трубки. Футуристический вид систем водяного охлаждения и возможности их кастомизации сделали СЖО чрезвычайно популярными в среде моддеров. Производители СЖО ответили на эту популярность прозрачными трубками, подсветкой и флуоресцирующими присадками к теплоносителю. Разумеется, вся эта красота имеет смысл только при размещении в системном блоке с прозрачной крышкой.

Варианты выбора.

Если вы ищете недорогую замену огромному башенному кулеру, выбирайте среди базовых необслуживаемых систем в пределах 3000 — 5000 рублей.

Если вы – фанат оверклокинга и всегда разгоняете свой процессор до максимально допустимых величин, но при этом не хотите возиться с установкой и настройкой обслуживаемой СЖО, вам понадобится мощная необслуживаемая СЖО. Это обойдется вам в 6000-12000 рублей.

Если внешний вид компьютера имеет для вас не меньшее значение, чем его производительность, то СЖО с подсветкой и прозрачными трубками сделают ваш системный блок намного более эффектным.

Если вы не любите лишний шум или если ваш компьютер стоит в спальне – вам потребуются СЖО с пониженным уровнем шума. Такие стоят от 3000 рублей.

И, наконец, если вы предпочитаете иметь возможность тонкой настройки всего на свете и хотите иметь возможность конфигурировать СЖО под свои нужды, обратите внимание на обслуживаемые СЖО. Правда, стоят они недешево – от 8000 до до нескольких десятков тысяч рублей.

Источник