Меню

В корзинке лежали яблоки и груши съели половину всех яблок

Задача «нерешайка» про яблоки. Только немногие смогут решить эту задачу на логику

Условия задачи:

На трех ветках было 80 яблок.

Если с первой ветки сорвать 3 яблока.

Со второй ветки сорвать треть яблок.

А на третьей ветки оставить треть яблок.

То на всех ветках яблок станет поровну.

Сколько яблок было на каждой из веток первоначально?

Правильное решение задачи для самопроверки внизу страницы.

Предложите в комментариях свой вариант решения этой задачи.

Решение задачи:

Пусть х – количество яблок на каждой из веток после сбора.

Тогда первоначально на первой ветке было (х + 3) яблок.

На второй ветке первоначально было (х + х/2) = 1,5х яблок.

А на третьей ветке было (х + 2х) = 3х яблок.

(х + 3) + 1,5х + 3х = 80,

То есть сейчас на каждой из веток по 14 яблок.

Значит первоначально на ветках было:

— на первой ветке (х + 3) = (14 + 3) = 17 яблок,

— на второй ветке 1,5х = 1,5 * 14 = 21 яблоко,

— на третьей ветке 3х = 3 * 14 = 42 яблока.

Ответ: на первой ветке первоначально было 17 яблок, на второй ветке было 21 яблоко, а на третьей – 42 яблока.

Ставьте лайк, делитесь с друзьями!

Подписывайтесь на канал и решайте задачи разного уровня сложности: «зеленые» — простые, «желтые» — средние, а «красные» — самые сложные.

Источник

Владимир Лёвшин: Три дня в Карликании

Это первая книга сказочной трилогии.

Для того, чтобы ребёнок понимал и решал предложенные в книге задачи, необходимо, чтобы он уже был знаком с дробями. Поскольку обыкновенные дроби введены в школьную программу в 4-м классе, можно смело рекомендовать эту книгу четвероклассникам, пятиклассникам и детям среднего школьного возраста.

Подробно рассмотрим четыре задачи , предложенные в книге и поднятые т емы.

Задача 1: Яблоки

«На трех тарелках лежат яблоки. На первой тарелке лежит половина всех яблок. Когда с этой тарелки взяли половину того, что лежало на второй тарелке, а затем половину того, что было на третьей, на первой тарелке осталось всего два яблока. Спрашивается, сколько яблок лежало вначале на каждой тарелке?»

В книге малыши отчаялись решать эту задачу: «Малыши сосредоточенно засопели, водя палочками по песку, некоторые от усердия даже высунули языки. Скоро, однако, настроение у них явно испортилось. Многие даже заплакали.»

Если ребёнок не может сходу понять/нарисовать условие задачи, попросите его сперва решить следующие задачи:

Задача 1 . Пете и Васе дали три яблока. Как разделить эти яблоки между детьми?

Решение: ребёнок может решить двумя способами — 1) одно яблоко разделить пополам, тогда у Пети и у Васи будет по одному целому яблоку и по одной половинке; б) каждое яблоко разделить пополам, тогда у каждого мальчика будет по 3 половинки яблока.

Задача 2 . Пете и Васе дали одно яблоко и одну грушу. Как разделить фрукты между детьми?

Решение: необходимо разрезать яблоко и грушу пополам, и у каждого мальчика будет по половине яблока и груши.

Задача 3 . Пете и Васе дали три яблока. Как разделить эти яблоки между детьми поровну так, чтобы у каждого было ровно половина фркуторв?

Решение: кажется, что задача полностью повторяет задачу под номером 1. Однако, в первой задаче условие допускало любое деление фруктов, в этой же задаче мальчики обязаны получить ровно половину всех яблок. Наводящий вопрос ребёнку: что делать, если эти яблоки разного размера и цвета? В этом случае решени только одно: каждое яблоко следует разрезать пополам. Т.о. у каждого мальчика будут три половинки и яблоки будут поделены между ними поровну.

Задача 4 . На двух чашах весов лежат три яблока. Весы в равновестии. На первой чаше весов лежит первое яблоко, которое весит столько же, сколько второе и третье, вместе взятые, лежащие на другой чаше весов. От второго и третьего яблока отрезали по половине и съели. Сколько нужно отрезать от первого яблока, чтобы весы снова были в равновесии?

Решение: Наводящий вопрос: что значит, что весы были в равновесии? Ребёнок должен догадаться, что задача решается не с яблоками, а с весом.

Теперь можно переходить к решению задачи из книги «Три дня в Карликании»:

Помогите ребёнку нарисовать иллюстрацию к задаче — три тарелки. » На т рех тарелках лежат яблоки «

Читайте также:  Джем из груш на зиму простой рецепт с лимонной кислотой

» На первой тарелке лежит половина всех яблок «. На первой — половина всех яблок. Значит, на второй и третьей — вторая половина всех яблок.

» Когда с этой тарелки взяли по ловину того, что лежало на второй тарелке «. Делим содержимое второй тарелки пополам.

» а затем половину того, что было на третьей «. Делим содержимое третьей тарелки пополам.

Мы уже знаем, что содержимое второй и третьей тарелки равно содержимому первой тарелки. Значит, если мы берем половину содержимого на второй и третьей тарелках вместе — значит, мы взяли половину содержимого первой тарелки.

» на первой тарелке осталось всего два яблока «. Мы взяли половину с первой тарелки и у нас осталось 2 яблока (2 яблока — 1/2 от всех яблок, лежащи на первой тарелке). Значит, на целой тарелке 4 яблока.

» Спрашивается, сколько яблок лежало вначале на каждой тарелке? » 4 яблока — это половина всех яблок на тарелках. Значит, на второй и третьей тарелках лежат 4 яблока. Решение в целых числах: на второй и третьей тарелках по 2 яблока.

Степени и корни

Бесконечность

Позиционные системы счисления: двоичная, десятеричная, шестидесятеричная

Разница между цифрами и числами

Коммутативный закон сложения

Умножение на 0

Признаки делимости целых чисел на 2, 3, 9, 10, 11

Задача 2: «Наиболее общий признак деления на 11?»

«Пусть многозначное число N имеет цифру единиц а, цифру десятков b, цифру сотен с, цифру тысяч d и т. д., т. е.
N = а + 10b + 100с + 1000d + . = a + 10 (b + 10c + 100d + . ),
где многоточие означает сумму дальнейших разрядов.
Вычтем из N число 11(b + 10с + 100d + . ), кратное одиннадцати. Тогда полученная разность, равная, как легко видеть,
а — b — 10(c + 10d + . ),
будет иметь тот же остаток от деления на 11, что и число N. Прибавив к этой разности число ll(c + 10d + . ), кратное одиннадцати, мы получим число
a — b + c + 10(d + . ),
также имеющее тот же остаток от деления на 11, что и число N. Вычтем из него число 11(d + . ), кратное одиннадцати, и т. д. В результате мы получим число
a — b + c — d + . = (а + с + . ) — (b + d + . ),
имеющее тот же остаток от деления на 11, что и исходное число N.

Отсюда вытекает следующий признак делимости на 11 : надо из суммы всех цифр, стоящих на нечетных местах, вычесть сумму всех цифр, занимающих четные места; если в разности получится 0 либо число (положительное или отрицательное), кратное 11, то и испытуемое число кратно 11; в противном случае наше число не делится без остатка на 11.

Испытаем, например, число 87635064:
8 + 6 + 5 + 6 = 25,
7 + 3 + 0 + 4 = 14,
25 — 14 = 11.
Значит, данное число делится на 11.

Существует и другой признак делимости на 11 , удобный для не очень длинных чисел. Он состоит в том, что испытуемое число разбивают справа налево на грани по две цифры в каждой и складывают эти грани. Если полученная сумма делится без остатка на 11, то и испытуемое число кратно 11, в противном случае — нет. Например, пусть требуется испытать число 528. Разбиваем число на грани (5/28) и складываем обе грани:
5 + 28 = 33.
Так как 33 делится без остатка на 11, то и число 528 кратно 11:
528 : 11 = 48.

Докажем этот признак делимости. Разобьем многозначное число N на грани. Тогда мы получим двузначные (или однозначные*) числа, которые обозначим (справа налево) через а, b, с и т. д., так что число N можно будет записать в виде
N = a + 100b + 10000с + . = a + 100(b + 100с + . ).
* (Если число N имело нечетное число цифр, то последняя (самая левая) грань будет однозначной. Кроме того, грань вида 03 также следует рассматривать как однозначное число 3.)
Вычтем из N число 99(b + 100с + . ), кратное одиннадцати. Полученное число
а + (b + 100с + . ) = a + b + 100(с + . )
будет иметь тот же остаток от деления на 11, что и число N. Из этого числа вычтем число 99(с + . ), кратное одиннадцати, и т. д. В результате мы найдем, что число N имеет тот же остаток от деления на 11, что и число
а + b + с + . «

Читайте также:  Отношения груши и ивана флягина

Источник: Я.И.Перельман «Занимательная алгебра», http://mathemlib.ru/books/item/f00/s00/z0000003/st051.shtml

Т.о., кроме описанного в книге «Три дня в Карликании», существуют ещё два признака делимости на 11.

Признак 2: Число делится на 11 тогда и только тогда, когда на 11 делится сумма чисел, образующих группы по две цифры, начиная с единиц (пример: 1|23|45|67|89).
Например, 10|37|85 делится на 11, так как на 11 делятся 10+37+85=132 и 01+32=33.

Признак 3: Число делится на 11 тогда и только тогда, когда на 11 делится знакочередующаяся сумма чисел, образующих группы по три цифры, начиная с единиц (пример: 1|234|567|890).
Например, 1|002|001 делится на 11, так как 1 − 2 + 1 = 0 — делится на 11.

Источник

Проверочная работа 4 (с. 10 – 11)

Окт 16

Проверочная работа 4 (с. 10 – 11)

Числа от 1 до 100. Нумерация

Ответы к стр. 10 — 11

Проверочная работа 4

Вариант 1

1. В песочнице играли 6 девочек, а мальчиков на 3 меньше. Сколько мальчиков играло в песочнице?

О т в е т: 3 мальчика.

2. Мама купила 8 яблок и 10 груш. На сколько больше груш, чем яблок, купила мама?

О т в е т: на 2 груши больше.

3. В кувшине было 9 стаканов молока. Из кувшина отлили 3 стакана молока. Сколько стаканов молока осталось в кувшине?

О т в е т: 6 стаканов осталось.

4. В зоопарке было 3 белых медведя, а бурых медведей на 4 больше. Сколько всего белых и бурых медведей было в зоопарке?

1) 3 + 4 = 7 (м.) — бурых
2) 3 + 7 = 10 (м.) — всего

О т в е т: 10 медведей всего.

Вариант 2.

1. В коробке было 10 карандашей. Из коробки взяли 6 карандашей. Сколько карандашей осталось в коробке?

О т в е т: 4 карандаша осталось.

2. У Миши было 3 тетради в линейку, а в клетку на 4 тетради больше. Сколько тетрадей в клетку было у Миши?

О т в е т: 7 тетрадей.

3. В первом ряду 9 стульев, а во втором — 7. На сколько меньше стульев во втором ряду, чем в первом?

О т в е т: на 2 стула меньше.

4 . В корзине лежат белые грибы и лисички. Белых грибов 5, а лисичек на 4 больше, чем белых. Сколько всего белых грибов и лисичек в корзине?

1) 5 + 4 = 9 (г.) — лисичек
2) 5 + 9 = 14 (г.)

Источник

Контрольная работа по математике,4 класс

38 000 репетиторов из РФ и СНГ

Занятия онлайн и оффлайн

Более 90 дисциплин

2. Найдите значения выражений.

I в а р и а н т

1. Найдите значения выражений

400 – (80 + 180 : 3) + 60

(210 – 30) : 9 · (999 + 1)

2. Решите задачу, записывая решение столбиком.

На комбинате в декабре изготовили 7 163 л сока, а в январе на 678 л сока меньше. Из всего сока 9 789 л разлили в пакеты, а остальной сок – в бутылки. Сколько литров сока разлили в бутылки?

3. Запишите числа:

18 млн 50 тыс. 7 ед.

4. Выполните вычисления в столбик.

3 489 · 65 15 640 : 46

623 · 760 41 574 : 82

125 см = …м …дм …см

6. Решите задачу*.

В корзину с красными яблоками положили 15 зеленых яблок. После того как из корзины взяли половину всех яблок, в корзине осталось 18 яблок. Сколько красных яблок было в корзине сначала?

II в а р и а н т

Найдите значения выражений

7 20 : (2 + 7) + (140 – 90)

(480 + 320) : 8 · (9 + 91)

2. Решите задачу, записывая решение столбиком.

В одном павильоне книжной ярмарки было 9 895 книг, а в другом – на 1 376 книг больше. Из всех книг 13 297 были для детей, а остальные для взрослых. Сколько было книг для взрослых?

3. Запишите числа:

43 млн 3 тыс. 52 ед.

4.Выполните вычисления в столбик.

804 · 56 9 504 : 44

489 · 490 35 260 : 82

275 см = …м …дм …см

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

Читайте также:  Большая груша маленькая грушка

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

6. Решите задачу*.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?.

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

5. Решите задачу на логическое мышление.

В вазе лежали яблоки. В эту вазу положили 11 груш. После того как из вазы взяли половину всех фруктов, в ней осталось 16 фруктов. Сколько яблок было в вазе сначала?

Источник

Страница 29 — Математика 3 класс. Моро, Бантова, Волкова. Учебник часть 1

Что узнали. Чему научились

Вопрос

Подсказка

Вспомни, как называются числа при умножении и числа при делении.

Ответ

Поделись с друзьями в социальных сетях:

Вопрос

2.

24 : 3 =

9 • 2 = 7 • 3 12 : 2
: 9 = 2 . 3 • = 24 .
: 2 = 9 . 24 : = 3 .

Подсказка

Вспомни, как проверить результат деления и результат умножения.

Если делимое разделить на частное, получится делитель.

Если частное умножить на делитель, получится делимое.

Источник

Adblock
detector