Термоэластопласт

Термоэластопласт

Содержание

Развитие технологий обусловливает рост видов продукции ТЭП, которые могут применяться на коммерческой основе. При этом ситуация только усложняется, так как ассортимент коммерческой продукции в каждом виде также резко возрастает. В данной статье представлен краткий обзор последних разработок в области ТЭП полимеров, новой продукции в различных группах ТЭП продуктов и ее возможностей.

Обзор ТЭП
ТЭП – это полимеры с механическими свойствами эластомеров, однако по способу переработки они являются термопластиками. В целом, структура ТЭП состоит из двух микроскопических фаз: одна низкомодульная и легко деформируемая, а вторая – жесткая, выполняющая функции связи между упруго-эластичными зонами. Такие свойства обусловливают возможность изменения внутренних механических характеристик ТЭП от упруго-эластичного полимера до полимерной жидкости. При нагревании ТЭП выше температуры плавления, жесткая фаза расплавляется и позволяет полимеру вытекать в перерабатывающее оборудование.
При более низких температурах ТЭП имеет свойства эластомера и быстро восстанавливает форму после растяжения или сжатия. Предельная температура применения ТЭП – температура плавления пластиковой фазы. Минимальная температура применения ТЭП значительно ниже этого предела и ограничивается способностью полимера выдерживать окислительную и химическую деструкцию, которая значительно повышается при высоких температурах. Различные группы ТЭП образованы на основе химического различия составляющих полимеров. Основой нескольких групп стал полимер, состоящий из макромолекул, сочетающих жесткие и эластичные блоки. Это блоксополимеры, включающие термопластичные стирольные эластомеры (СБС), термопластичные уретаны (ТПУ), сополиэфиры COPE), сополиамиды (COPA).
      Другие группы представляют собой соединения жестких и эластичных полимеров, достаточно совместимых для обеспечения связи. В них входят термопластичные соединения полиолефиновых эластомеров (ТПО) и полипропилена с поливинилхлоридом/бутадиен-нитрильными каучуковыми смесями (ПВХ/БНК). Еще одна группа объединяет отдельные жесткие и эластичные полимеры, вступившие в химические реакции для усиления механических свойств, особенно в местах поперечного сшивания фазы эластомера. ТЭП с фазой эластомера поперечного сшивания являются термопластичными вулканизатами (ТПВ) и, как правило, имеют механические свойства класса термопластичной резины. Резкий количественный рост продуктов в этих областях продолжается, особенно это касается термопластичных вулканизатов (ТПВ).

Материалы
     Новые разработки внедряются во многих типах ТЭП. Ниже приводятся краткие сведения о каждой технологии. Перечень распределен по типам ТЭП.

Термопластичные стирольные эластомеры (СБС)
     СБС распределяются на две общие категории: насыщенные и ненасыщенные полимеры. Ненасыщенные СБС, включая бутадиен-стирольные блоксополимеры и стирол-изопрен-стирольные блоксополимеры, являются материалами с низкой температурой плавления, они более подвержены тепловой деградации, обладают низкой химической устойчивостью и более экономичны. Насыщенные СБС, в основном стирол-этилен-бутилен-стирольные блоксополимеры, обладают высокой температурой плавления, высокой устойчивостью к тепловой деградации и повышенной химической устойчивостью. Последние разработки в области СБС включают очень мягкие составы со свойствами гелей и низкой твердостью по Шору А 5-10. Также недавно введены классы СБС с оптической прозрачностью. Разработаны СБС, вступающие в реакцию как ТПВ, для придания им более высокой памяти формы и характеристик уплотнения, повышенной химической устойчивости и температуры использования.

Полимерные смеси ТЭП
    Самыми распространенными полимерными смесями ТЭП являются термопластичные полиолефиновые эластомеры (ТПО), являющиеся смесью тройного сополимера этилена, пропилена и диена с полипропиленом. Они используются в коммерческих целях уже несколько лет, но продолжают активное развитие вследствие своей экономичности. Благодаря развитию реакторных олефинов, которые повышают эффективность и, видимо, экономичность, внедряются новые разработки ТПО. Металлоорганическая каталитическая полимеризация олефинов обусловила разработку полимерных молекул с заданными свойствами. Некоторые из них имеют большее сходство с блок сополимерами, благодаря контролю сополимеризации этилена и пропилена с другими диеновыми олефинами. Разработка нового олефинового полимера, включая эластичные полиолефиновые эластомеры (ПОЭ) и полужесткие полиолефиновые пластомеры (ПОП) обусловила возможность появления целого ряда новых продуктов с заданными свойствами, в особенности продуктов ТПО.

Термопластичные вулканизаты (ТПВ)
    Разработки в области ТПВ продолжают активно развиваться, поэтому темпы роста ТПВ лидируют из всех типов ТЭП. Самый большой объем разработок ТПВ основан на смесях тройного сополимера этилена, пропилена и диена и полипропилена (ДПЭ/ПП).
Для обеспечения улучшенных свойств ТПВ были задействованы последние достижения химии поперечного сшивания. Классы ДПЭ/ПП при многокомпонентном формовании обычно связываются только с олефинами. Этот барьер был преодолен разработкой классов, которые прекрасно связываются с полиамидами, особенно нейлоном 6, а также классов, связывающихся с сополимерами акрилонитрила, бутадиена и стирола (АБС-сополимер), полиэстером и другими техническими термопластами. На рисунке 1 представлена фотография эффективного применения технологии ДПЭ/ПП ТПВ при изготовлении ручки степлера. В последнее время диапазон самых эластичных материалов ДПЭ/ПП ТПВ расширился до 25 А по Шору.

 Рис. 1. Мягкие ручки степлеров из термопластичного вулканизата.

       Для более дешевого применения с менее жесткими техническими требованиями внедрены ТПВ (r-ТПВ) на основе вторично используемых материалов, где каучуковой фазой является поперечно сшитый переработанный каучук. В каучуковой фазе используется, как правило, натуральный или стирол-бутадиеновый каучук, поэтому верхняя предельная температура использования материала совпадают с предельными температурами натурального и стирол-бутадиенового каучука. Недавно также внедрено несколько новых типов ТПВ, включая ТПВ с фазой силоксанового каучука. Он называется термопластичный силиконовый вулканизат (ТПSiВ). Этот мягкий, бархатистый на ощупь материал может использоваться при постоянной температуре 140 – 150ºС.
       Хотя уже были внедрены материалы ТПВ с более высокой водной стойкостью, такие как нитрильный каучук (БНК), в соединении БНК/ПП ТПВ с фазой нитрильного каучука в ПП, их использование ограничивалось максимальной температурой 150ºС или практическим пределом 125ºС. Новые ТПВ с высокой водной стойкостью и повышенным температурным пределом 177ºС внедрены с фазой акрилатного каучука (AEM) и фазой технического термопласта. Они обозначаются как AEM ТПВ.

Термопластичные полеуретаны (ТПУ)
       Блоксополимеры ТПУ являются самыми первыми продуктами ТЭП, получившими коммерческое применение. Продолжают внедряться новые разработки. Последние коммерческие разработки ТПУ обладают повышенной термостойкостью. Внедрены также новые классы с повышенной мягкостью до 20 по Шору А.

Сополиэфир ТПР (COPE)
     Сополиэфиры COPE остаются важным техническим классом ТЭП, который также получает все большее коммерческое развитие. Внедряются новые классы COPE, удовлетворяющие специфические технические требования. Важно отметить, что в последнее время внедряются классы с повышенной эластичностью и сопротивляемостью усталости при деформациях.

Свойства
     ТЭП обладают теми же основными свойствами, что и термореактивные резины (натуральная резина, неопреновая резина, резина ДПЭ и т.д.).

ТЭП и термореактивные резины классифицируются по своей способности выдерживать температуры и сопротивляться углеводородным жидкостям (масла, гидросмеси, топливо и т.д.) Данные свойства в целом представлены на диаграмме, где указаны диапазоны свойств ТЭП или резины. Эти новые разработки ТЭП представлены на рисунке 2 различными классами ТЭП, а на рисунке 3 представлены термореактивные резины.

Рис. 2. Температурная устойчивость ТЭП к действию масел.

Рис. 3. Температурная устойчивость термореактивных резин к действию масел.

       Данные классы ТЭП классифицируются эксплуатационными характеристиками, самой значимой из которых является твердость или эластичность. Твердость обычно обозначается по Шору А или Шору Д. Приблизительный коммерчески доступный диапазон твердости для разных ТЭП указан на рисунке 4. Расширенный диапазон твердости для нескольких классов выделен цветом.

Рис. 4. Диапазон твердости для различных классов ТЭП.

     Стоимость ТЭП продукции зависит от нескольких факторов, включая экономичность переработки пластмасс и стоимость материала. Относительная приоритетность различных классов в зависимости от температур/устойчивости к действию масел представлена на рисунке 5; новейшие классы ТЭП выделены цветом.

Рис. 5. Сравнение зависимости стоимости и эксплуатационных характеристик классов ТЭП.

Применение
       Эксплуатационные характеристики различных классов ТЭП позволяют использовать их на коммерческой основе в большинстве областей промышленности. Последние разработки ТПВ и ТПSiВ – это материалы с высокой устойчивостью к действию масел, которые удовлетворяют температурным требованиям для целого ряда технических применений, таких как уплотнители под капотом двигателя автомобиля, защитные кожухи и шланги

Рис. 6. Мягкие ручки из сополимера этилена-пропилен-диена и полипропилена (ДПЭ/ПП ТПВ)для кухонных мерных чашек и ложек

        COPE с меньшей твердостью и повышенной динамической эластичностью является предпочтительным материалом для продукции повышенной эластичности, такой как автомобильные колодки. Мягкость материалов ДПЭ/ПП ТПВ определяет их применение в качестве держателей и ручек бытовых предметов, включая инструменты и посуду. Посуда требует соблюдения соответствия нормам по контактам с пищевыми продуктами, поэтому в коммерческом использовании находятся особые ТПВ, которые соответствуют требованиям для бытовой посуды и прокладок для пищевых контейнеров. На рисунке 6 представлен набор кухонных бытовых предметов с цветными ТПВ ручками.
       Последние полиолефиновые эластомеры ПОЭ и ПОП открыли новые возможности использования в крупномасштабных прикладных системах и в качестве компонентов ТЭП. Некоторые из них окажутся полезными для автомобильных интерьеров и других мягких эластичных поверхностей, где будет применяться состав из поливинилхлорида.
       Новые составы R-TPE являются очень экономичными и приспособлены для использования при низком сопротивлении действию масел и термоустойчивости: автомобильные брызговики, ограждения площадок, коврики при входе и шумопоглощающие прокладки. Благодаря своей экономичности, они заменили защитные покрытия из пластифицированного каучука.

       Последние разработки в области термоэластопластов (ТЭП) обусловили значительное совершенствование и расширение эксплуатационных характеристик.

Термопластичная резина

Усовершенствования преодолели некоторые ограничения использования ТЭП для технического применения с новыми ТПВ и ТПSiВ . Мягкие материалы могут производиться из внедренных разработок СБС или мягких ТПВ. Качество поверхностей интерьеров автомобилей и, возможно, наружных компонентов значительно улучшится благодаря применению металлоценовых олифеинов с низкой твердостью, ПОЭ, и полужестких ПОП. Эти материалы также окажутся полезными как сырье для производителей, разрабатывающих специализированные ТЭП для различных ТЭП классов. Мягкие и устойчивые к динамическому изгибу COPE позволят усовершенствовать автомобильные колодки и соответствующие технические устройства. Наконец, в качестве альтернативы пластифицированному каучуку и термопластичной резине, появятся экономичные, простые в производстве R-TPE на основе продуктов вторичной переработки.

В конструкциях окон системы «ФАВОРИТ» применяются свариваемые уплотнители из термоэластопластов (ТРЕ) серого цвета.

«Thyssen Polymer», компания, которая в дальнейшем вошла в состав концерна «Deceuninck», была пионером по использованию ТРЕ уплотнений на европейском рынке. Использование протянутых ТРЕ уплотнений было начато в 1996 году, тогда на этих профилях стали работать несколько партнеров компании во Франции. Важным этапом для развития ТРЕ уплотнений в Германии стало введение соответствующего раздела в требования в RAL-GZ/716, часть 2. Это произошло в августе 1997 года. В том же году «Thyssen Polymer» стал первой немецкой компанией, получившей свидетельство RAL о качестве окон со свариваемыми ТРЕ уплотнениями.

На сегодняшний день на российском рынке доминируют резиновые уплотнители из EPDM. Эти уплотнители протягиваются от руки в пазы профиля вручную на производствах после сварки рам. Они всегда имеют черный цвет и не могут свариваться в силу своих структурных свойств. В качестве упорных уплотнений для стеклопакетов в створках, а также в штапиках, некоторые поставщики профилей применяют уплотнители из ТРЕ.

Компания «Deceuninck» предложила на российском рынке систему профилей полностью оснащенных свариваемыми, протянутыми или коэкструдированными, уплотнителями на основе ТРЕ. Новизна подхода состоит именно в его комплексности. Все главные профили системы (рама, створка, импост, штульп, а также штапики) поставляются только с протянутыми или коэкструдированными уплотнителями из ТРЕ серого цвета.

Что такое термоэластопласты?

Термоэластопласты, термопластичные эластомеры — это синтетические полимеры, которые при обычных температурах обладают свойствами резин, а при повышенных — размягчаются, подобно термопластам. В отличие от каучуков, ТРЕ перерабатываются в резиновые изделия, минуя стадию вулканизации.

Это материал, сочетающий свойства вулканизованных каучуков, при нормальной и низкой температурах, со свойствами термопластов при 120 °С-200 °С. ТРЕ могут перерабатываться как пластмассы, на стандартном оборудовании методами формования, экструзии, литья под давлением с малыми технологическими потерями. При этом благодаря отсутствию необходимости в вулканизации создается возможность многократной повторной переработки отходов при изготовлении изделий.

Области применения термоэластопластов разнообразны. Это автомобильная, кабельная промышленность, электротехническая, резиновая, полимерная промышленность, товары народного потребления и другое. За период с 1990 по 2000 г.г., только в автомобилестроении объем использования ТРЕ вместо резин, в США возрос в 2,5 раза, в
Западной Европе в 3 раза, в Японии в 12 раз.

Происходит смена поколений. ТРЕ нарушил монополию вулканизаторов. Резины и галогеносодержащие пластики уступают место термоэластопластам. Стройматериалы (уплотнители, в том числе для окон, гибкие кровли, асфальт), детали автомобилей (уплотнители окон, бамперы, детали интерьера), медицинские материалы (системы хранения и переливания крови), инструменты (эластичные ручки, противоударные элементы), обувь (подошва), предметы гигиены (зубные щетки, бритвенные наборы), бытовая техника (корпусы видеокамер, фотоаппаратов) и детские атрибуты (соски и игрушки) — все эти необходимые товары сегодня изготавливаются из ТРЕ-материала, что еще раз подтверждает его безопасность и долговечность.

Преимущества ТРЕ-уплотнителя:

1. Превосходная озоно и UV-стойкость

2. Высокая эластичность даже при морозе 60 °С

3. Высокая прочность, устойчив к растяжениям

4. Высокая долговечность, более 30 лет;

5. Цвет уплотнителя определяется красителями. Собственный светлый цвет термоэластопласта позволяет выпускать уплотнения разных оттенков цвета путем добавления красителей.

6. Химически устойчив к большинству химикатов.

Что такое ТЭП и какая подошва лучше?

Не требует специального ухода и замены.

8. Проблема продувания в углах сводится в ноль, т.к. при сварке рамы, сваривается и уплотнитель

«Зеленые» любят ТРЕ за то, что он 100% перерабатывается, не содержит хлор и серу. Новые термоэластопласты не содержат свинцовых стабилизаторов и других тяжелых металлов. Другим положительным свойством новых термоэластопластов, с точки зрения экологии, является пониженная миграция пластификатора.

ТРЕ уплотнители беспроблемно свариваются на стандартных станках со сварочными зеркалами, при температуре 230-240°С. Благодаря термопластичным качествам при сварке, обеспечивается высокая прочность сварного шва. Это гарантирует надежное уплотнение оконных конструкций в углах.

На испытаниях, которым были подвергнуты готовые окна в Германии уже сотни раз, было безусловно подтверждено соответствие окон всем нормативным требованиям по тепло и шумозащите, по воздухопроницаемости и ливнестойкости.

Рецептура уплотнений, поставляемых в Россию, была проверена на особо низкие температуры на испытательных стендах в PfB, Центре для испытания строительных элементов, Лакерман-нвэг, 24, Д-83071, Штефанскирхен, Германия. Испытания проходили при температуре -50°С, и при этом окно показало воздухопроницаемость класса 4 по DIN EN 12207: 2000-06. Это наиболее высокий класс по плотности окна в соответствии с немецкими нормами. Уплотнение полностью выполняло свою функцию при температуре, которая бывает только в самых холодных и северных регионах нашей страны.

     Обувь, как и аксессуар, подчеркивает стиль и статус хозяина. Занимающая должность или подготовка к конкретному мероприятию диктуют нам определенный гардероб, включающий соответственную обувку. Когда стоит вопрос выбора туфлей, опирайтесь на одежду, под которую выбираете их. Чтоб определить подходящие мужские туфли, разберемся в их разновидностях.   1.       Лаковые туфли без перфораций и других декоративных элементов. Самые строгие и обычно имеют закрытую шнуровку. Носят под фрак или строгий костюм.

Что такое термопластичная резина

Уместны на торжественных мероприятиях, банкетах, церемониях.  Есть кожаные варианты с лаковыми вставками, часто выделяют носовую часть, могут идти без шнуровки. Такой облик остается праздничным, но без особой строгости. Здесь подойдут различные костюмы, полотняные штаны с пиджаком.   2.       Кожаные туфли, не имеющие лишних украшений, на шнурках и на тонкой подошве относятся к классике. Классические мужские туфли подойдут только под формальное убранство. В таком облике можно посещать офисную работу, деловые встречи, не официальные банкеты.   3.       Кожаные модели с перфорацией, с различными декоративными вставками, бляшками, комбинированные с другими типами кожи (с замшевой или нубуковой), полностью замшевые, с языками на резинке. Эти образцы менее официальные и имеют повседневный характер. Они могут быть выполнены в различных расцветках. На данный момент актуальны: красный, синий, серый. К цветной обуви подбирайте гармоничную по цвету одежду. Сочетаются такие разновидности с не официальными костюмами, джинсами и пиджаком, полотняными штанами.   4.       Есть еще один тип — это туфли-мокасины, так называемые лоферы. Обувка внешне напоминает мокасины, но с каблуком. Такой вариант носят под укороченные штаны или чиносы и обязательное их одевают без носков. ..
Вся статья

Добавлено: 29.11.2015

Всё о подошве.

Резиновая подошва— подошва, изготовленная из резины. По данным на ., сегодня до 30% всех обувных подошв в мировом производстве обуви изготавливается из резины.

Обувные подошвы

Наряду со своими великолепными свойствами основным недостатком всех обувных резин является как многокомпонентность состава резиновой подошвы, так и большое число производственных операций резинового производства.

Полимерная подошва — общее название класса подошв, основой материала которых являются те или иные полимеры.
Обувную промышленность заинтересовали следующие свойства полимерных материалов:
— хорошая термостойкость при воздействии высоких температур и эластичность при низких температурах;
— стойкость к воздействию микроорганизмов, растворителей, щелочей, кислот, радиации, света, озона;
— высокая остаточная прочность при многократном изгибе и сопротивление разрыву;
— высокая степень электроизоляции.
Подбирая рецептуру на основе полимеров, можно получать материал для обувной подошвы со свойствами, которые в оптимальной мере отвечают поставленным задачам.
Из полимерных материалов можно изготовить даже очень тонкую подошву, а различные вставки позволяют сделать её многоцветной, что очень важно для современной обуви. При этом дизайнеры имеют максимальную степень свободы в оформлении профиля подошв для создания разнообразной и разнопрофильной обуви.
ПВХ-подошваsans-serif- высокая остаточная прочность при многократном изгибе и сопротивление разрыву;
— высокая степень электроизоляции.
Подбирая рецептуру на основе полимеров, можно получать материал для обувной подошвы со свойствами, которые в оптимальной мере отвечают поставленным задачам.
Из полимерных материалов можно изготовить даже очень тонкую подошву, а различные вставки позволяют сделать её многоцветной, что очень важно для современной обуви. При этом дизайнеры имеют максимальную степень свободы в оформлении
 — распространённый вид подошвы, изготовленной из поливинилхлорида.
Введение пластификаторов в ПВХ позволяет повысить морозостойкость полимерной композиции. Чем больше содержание пластификаторов, тем выше эластичность и морозостойкость, но ниже прочность. Пластификаторами ПВХ-композиций для низа обуви являются сложные эфиры фталиевой и себациновой кислот. Так как пластификаторы ослабляют межмолекулярное взаимодействие в зоне клеевого шва, то не допускается применение наиритового клея. При использовании ПВХ-подошв необходимо нанесение на затяжную кромку обуви полиуретанового клея.
Вместе с тем ПВХ-подошвы считаются низкоэластичными и неморозостойкоми.
ТЭП-подошва — подошва обуви, изготовленная из термопластичной резины; принципиально новый (.) материал для обувной подошвы.
Синоним: термоэластопласт-подошва.
ТЭП сочетают в себе эластичные свойства каучуков (способность к высокоэластическим деформациям и высокая морозостойкость) и термопластические свойства термопластов (высокая текучесть в расплавленном состоянии и способность перерабатываться литьевым способом).
Термоэластопластичные подошвы лишены недостатков резиновых подошв, низкой эластичности и морозостойкости ПВХ-подошв.
Уникальные физико-механические свойства ТЭП обусловлены их строением.
ТЭП-подошва представляет собой интегральную структуру: наружные слои подошвы монолитные, а внутренние, в объёме изделия, — пористые. 
В отличие от пористых подошв из резины твёрдость и истираемость ТЭП-подошв не зависит от плотности, благодаря наличию монолитного наружного слоя.
ТЭП-подошва отличается высокой морозоустойчивостью (- 50 °С). По показателям истираемости значительно превосходит многие термопласты, некоторые резины.
ТЭП-подошвы обладают высоким коэффициентом трения по асфальту, мокрым дорогам и снегу, что снижает травматизм в зимнее время.
Недостатком ТЭП-подошвы является сравнительно небольшая термостойкость.
Полиуретановая подошва — подошва, изготовленная на основе полиуретана.
Синоним: ПУ-подошва.
Обладают совоку

admin