Смесительный узел теплого пола

Смесительный узел теплого пола

Содержание

Зачем нужен смесительный узел

Смесительный узел

Применение узла подмеса возможно, только если в качестве теплоносителя используется вода. Принцип такого отопления очень прост:

  • Котел.
  • Теплоноситель.
  • Отопительный контур для батарей и теплого пола.

Преимущественно температура теплоносителя в отопительных батареях составляет 95 °С. Для напольного обогрева достаточно 31 °С. Наличие такой температуры, создаст комфортные условия проживания, а по полу будет приятно передвигаться.

Обратите внимание! 31 °С для теплоносителя – это золотая середина. Пол не будет очень горячим или, наоборот, холодным. При этом важно учесть толщину отопительного пирога и тип покрытия. Отталкиваясь от этого, теплоноситель может достигать до 55 °С.

Котел выдает очень большую температуру, которая никак не соответствует техническим возможностям теплого пола, вследствие чего и обустраивается узел подмеса. Устанавливается он при входе теплоносителя в систему напольного обогрева. Благодаря ему горячий теплоноситель подмешивается остывшим, в результате чего наблюдается баланс температуры. Смесительный узел предотвратит возможную порчу системы напольного отопления.

Обратите внимание! Если водонагреватель греет воду только до допустимой температуры теплых полов, обустраивать узел подмеса нет необходимости. Если котел работает на прогрев воды и имеет отдельный контур для отопления, то узел подмеса необходим.

Принцип работы смесителя

Как работает смеситель

Принцип действия смесительного узла имеет простой цикл. Теплоноситель направляется к коллектору, затем останавливается возле предохранительного клапана, в который встроен термостат. Если температура выше допустимой, то в автоматическом режиме открывается клапан и подмешивается холодная вода. При достижении корректной температуры клапан закрывается, соответственно, поступление горячего теплоносителя прекращается. Этот цикл продолжается постоянно.

Работа смесительного узла для теплого пола своими руками возможна двумя методами. Задача коллектора заключается не только в управлении и анализе температуры теплоносителя. Он организовывает циркуляцию воды по отопительным контурам. Изготавливается он из двух деталей:

  1. Предохранительный клапан. Он осуществляет запитку горячей воды и одновременно анализирует входную температуру.
  2. Циркуляционный насос. Благодаря ему теплоноситель по трубам передвигается с необходимой скоростью, что содействует равномерному прогреву пола.

Помимо этих важных элементов, смеситель обустраивается другими деталями:

  • Байпас – выполняет задачу по защите узла от сильных нагрузок.
  • Отсекающий и дренажный клапан.
  • Воздухоотводчик.

Комплект смесительного узла

Сборка смесительного узла осуществляется до монтажа теплого пола. Устанавливать его можно в любом удобном месте. Это может быть котельная, в отдельной комнате или вместе с коллектором перед входом в него горячей воды.

Обратите внимание! Если теплый пол будет обустраиваться в нескольких помещениях, то смесительный узел необходимо установить на каждое из них или один общий в коллекторном шкафу.

Организация работы

Узел подмеса для теплого пола в котельной

Одно из главных различий работы узла подмеса является использование разных клапанов. Наиболее популярные трехходовые и двухходовые клапаны. Нередко двухходовой называют «питающий». Он оснащен термостатом с инфракрасным датчиком. При поступлении в теплый пол воды он анализирует ее температуру, а имеющаяся головка клапана открывает/закрывает подачу теплоносителя.

Двухходовой клапан В таком клапане смешивание воды происходит таким образом: теплоноситель передвигается в системе по кругу циклично. Предохранительная головка при необходимости открывается или закрывается. Это нужно для того, чтобы добавить горячую воду в систему.

Обратите внимание! Если отапливаемая площадь превышает 200 м2, то применять двухходовой клапан нельзя.

Трехходовой клапан Что касается трехходового клапана, то он оснащен несколькими функциями. Помимо питающей функции он играет роль балансировки за счет байпасного крана. От двухходового клапана отличается тем, что в нем смешивается горячая вода с остывшей, которая возвращается по обратке. Такие клапаны в большинстве случаев обустраиваются сервоприводами. Это устройство управляет погодозависимыми контролерами и термостатами.

Трехходовой клапан также оснащен заслонкой. Установлена она между трубой горячей воды, идущей от котла и холодной воды, идущей из обратки, под углом 90°. За счет этого можно выставлять любое положение клапана, в зависимости от того, какое соотношение горячей и холодной воды требуется.

Обратите внимание! При обустройстве теплого пола погодозависимым контролером, трехходовой клапан является универсальным устройством. Также он эффективен для обогрева больших площадей.

Кроме достоинств, можно выделить и недостатки такого клапана, среди которых два основных минуса:

  1. Подача в контур напольного отопления неохлажденной воды может вызвать скачок давления в трубах.
  2. Устройство нуждается в щепетильной регулировке. При небольшом отступе в системе может значительно поменяться температура.

Погодозависимый контролер

Для какой цели применяется погодозависимый контролер? Благодаря ему можно изменять мощность напольного отопления. Этот контролер отталкивается от погодных условий. Так, если на улице замечается резкое снижение температуры, контролер подает сигнал и автоматически повышает заданную температуру. Как следствие скорость циркуляции увеличивается. Благодаря этому теплые полы будут всегда содействовать комфортному проживанию в доме или квартире. Такое устройство напрямую связано с узлом подмеса.

Обратите внимание! Можно внедрять ручные клапаны управления. Но здесь будут возникать трудности, так как будет крайне сложно подобрать идеальный поток теплоносителя. Поэтому многие специалисты рекомендуют интегрировать автоматические погодозависимые контролеры, которые анализирует и дают соответствующий сигнал в течение всего лишь 20 секунд.

Особенности монтажа смесительного узла

Монтаж смесительного узла

Особых сложностей в установке узла подмеса нет. Для упрощения монтажа, вы можете воспользоваться схемами в конце этой статьи. Так, первым делом подбирается соответствующее место, где будет осуществляться монтаж группы подмеса. Хорошо, если он будет установлен в коллекторном шкафу. К выбранному месту должен быть свободный доступ. К установке подключаются трубы, идущие от котла и коллектор. Также монтируется датчик напора, давления и температуры. Эти датчики могут быть в комплекте или покупаются отдельно. Во втором случае вам придется собрать их самостоятельно.

Особое внимание уделите выбору трубы. Она должна справляться с высокой температурой подачи теплоносителя от котла. Таким требованиям соответствуют полимерные трубы.

Обратите внимание! Если в качестве теплоносителя будет использоваться гликолевый раствор, то монтировать оцинкованную трубу нельзя.

Собранный узел подмеса

Подключение и установка узла подмеса выполняется с учетом пузырей воздуха, которые могут попадать в систему теплого пола от обратку котлового контура. Установленный узел должен полностью исключать возможность попадания конденсированной жидкости или воды на детали, работающие под током. Завершается установка, подключением привода трехходового клапана. В завершение привод запитуется током. После калибровки он посылает управляющие сигналы.

Настройка смесительного узла

Когда узел подмеса установлен, важно выполнить его настройку по выбранной схеме. Настройка требует более детального разъяснения. Ниже приводится пошаговое руководство:

1 этап

Чтобы в процессе настройки сервопривод или терморегулятор никак не влиял, его следует снять.

Настройка терморегулятора

2 этап

Перепускной клапан выставляете на отметку 0,6 бар, это его максимальная отметка. В таком положении клапан не сработает, а иначе настройка будет некорректна.

Настройка перепускного клапана

3 этап

На этом этапе рассчитываете расположение балансировочного клапана контура напольного обогрева. Чтобы нам было удобнее вести подсчет, радиаторный контур мы обозначим 1, а контур теплого пола – 2. Для определения пропускной способности балансировочного клапана необходимо воспользоваться следующей формулой:

Формула пропускной способности

  • t1 – температура воды в подаче.
  • t2 подачи – температура воды в подаче теплого пола.
  • t2 обр – температура воды в обратке теплого пола.
  • Kυт – коэффициент = 0,9.

Расчет осуществляется так: t1 = 95 °С, t2 подачи = 35 °С, а t2обр = 35 °С. Ваши показатели переносите в следующую формулу. Полученный результат Kυб выставляете на балансировочном клапане:

Формула вычисления балансировочного клапана

4 этап

Теперь осуществляется регулировка насоса, а именно какой расход и потери давления будет иметь теплоноситель в отопительном контуре напольного отопления после узла подмеса. Чтобы выполнить точный расчет, воспользуйтесь следующей формулой:

Формула регулировки насоса

  • G2 – расход воды в отопительном вторичном контуре.
  • Q – общая сумма мощности всех приборов, которые смонтированы после узла подмеса.
  • с – теплоемкость воды. Для воды этот показатель равен 4,2 кДж/(кг°С).
  • t2 подачи – t2 обр – температура воды на обратке и подаче.

Для примера можете рассмотреть следующую формулу:

Дополнительная формула

Обратите внимание! Далее, выполняется гидравлический расчет. Он требуется для того, чтобы осуществить точные расчеты потери давления в отопительном контуре. Для этого можно воспользоваться онлайн–программой, которую можно найти на официальных сайтах производителей узлов подмеса.

Чтобы настроить скорость работы насоса можно воспользоваться следующими графиками:

График настройки скорости насоса

Первым делом делаете отметку, которая будет соответствовать напору и расходу насоса. Показатель, соответствующий скорости насоса это отметка выше кривой. Так, значение расхода может равняться 0,86 м3/ч, а напор 4,05 м в.ст.

Обратите внимание! Важно учесть и потери давления теплоносителя в отопительном контуре. Для этого берете запас в 1 м в.ст. В результате получаете — ΔPн = ΔPс + 1 = 4,05 + 1 м в.ст.

Ниже приводится график работы циркуляционного насоса:

Настройка скорости насоса

Если после всех этих вычислений настроить насос вам не получится, то вы можете пойти другим путем решения этой задачи. Насос выставляете на минимум. Если в процессе балансировки системы обнаруживается, что скорости насоса не хватает просто увеличиваете скорость на насосе на одно деление. Так, до тех пор, пока не достигните желаемой скорости передвижения теплоносителя.

5 этап

Теперь пришло время произвести балансировку отопительных веток. Для этого запорный балансировочный кран первичного контура следует закрыть. С клапана снимаете крышку. Шестигранным ключом по часовой стрелке поворачиваете до упора. Ветки отопительных контуров балансируются с использованием балансировочного клапана.

Обратите внимание! Балансировка не нужна в том случае, если после узла подмеса находится только один отопительный контур.

Настройка балансировки веток

Процесс балансировки происходит в следующем порядке:

  • Открываете на максимум балансировочные регуляторы.
  • На ветке, которая имеет максимальное отклонение расхода, закрывается клапан до нужного размера. По такому принципу регулируется каждый греющий контур теплого пола.
  • Если после балансировки настройка сбилась, требуется повторная корректировка.
  • Если вы так и не смогли настроить нужный расход при открытом клапане, насос включаете на высшую скорость.

6 этап

Теперь важно связать узел подмеса с другими отопительными приборами. Для этого открываете запорный балансировочный клапан радиаторного контура, который в самом начале вы закрыли. Открывается он до требуемого положения для нужного расхода теплоносителя.

Настройка связки узла с остальной системой

Для контроля расхода теплоносителя можно воспользоваться другим методом, а именно в обратке теплого пола. В таком случае вам потребуется такая формула:

Формула расхода теплоносителя

Из предыдущих расчетов вы сможете сделать следующий подсчет:

Формула итоговых расчетов

7 этап

Теперь пришло время для настройки перепускного клапана. На клапане давление выставляется на 10% больше максимального давления насоса при заданной скорости. Отталкиваясь от характеристики насоса, определяете общее давление в нем.

Настройка перепускного клапана

В каких случаях открывается перепускной клапан? Это происходит только в одной ситуации, а именно когда насос функционирует на увеличение давления, но при этом расход теплоносителя минимальный.

На графике отображается значение перепускного клапана:

График настройки перепускного клапана

Если в трубопроводе движение теплоносителя на первой скорости насоса 3,05 м в.ст., то это равняется 0,3 бара. В случае средней скорости насоса значение будет следующим: 4,5 м в.ст. = 0,44 бара, а на максимальной скорости 5,5 м в.ст. или 0,54 бара. Так, на перепускном клапане устанавливаете такое значение 0,54 – 5% = 0,51 бар.

8 этап

В самом конце необходимо проверить работу узла подмеса. Поэтому вы проверяете соотношение температуры в каждом контуре, а также насколько равномерно прогревается теплый пол в каждой отдельной ветке. Должно наблюдаться такое равенство:

Формула соотношение температуры

Индекс «ф» — фактическое, а «р» — расчетное значение.

В том случае если равенства нет, то запорный балансировочный кран закрываете на ¼. После, производите повторные расчеты, сняв предварительно показания. Если же равенство есть, то работа узла подмеса корректна. В таком случае устанавливаете на место термоголовку/сервопривод и надеваете защитный колпачок на каждый элемент, и в конце затягиваете винт балансировочного клапана.

Ниже приводится пример расчета:

Формула отклонения

Обратите внимание! В нашем случае отклонение составляет 6,6%. Это в рамках дозволенного (до 10%), а значит, настройка смесительного узла теплого пола выполнена правильно.

Итак, мы рассмотрели особенности сборки и настройки узла подмеса теплого пола. Здесь нельзя допустить ошибку. Если вы сомневаетесь в своих силах, то обратитесь за помощью к квалифицированному специалисту. В этой статье приводится немало схем, графиков, формул, которые наглядно показывают, как сделать сборку и настройку узла подмеса правильно. Если у вас есть личный опыт в подобных работах, то нам будут интересны ваше мнение, которое вы можете выразить в своих комментариях к статье.

Функции и устройство смесительного узла

Этот узел также называют модулем подмеса, что в полной мере соответствует его назначению. Этот прибор предназначен для смешивания воды, поступающей из отопительного котла, с нею же, но из обратной ветки контура, чтобы получить теплоноситель с приемлемой температурой.

Котел обычно прогревает воду довольно сильно, до 80-90 градусов. Для систем теплого пола такая температура высоковата, поэтому теплоноситель нужно разбавить, и проще всего это сделать при помощи обратного потока, который уже остыл.

Такие устройства устанавливают системы отопления с двумя и более рабочими кольцами, если теплый пол является дополнительным способом обогрева одновременно с радиаторами, так и когда дом отапливается только с помощью теплого пола.

Смесительный узел для организации теплого пола с жидким теплоносителем включает ряд термодатчиков и регулирующую головку, что позволяет подавать на контур теплоноситель с нужной температурой

Главные составляющие смесительного узла – это двухходовые вентили с термостатами, трех- или четыреходовой клапан и циркуляционный насос.

Если котел уже снабжен таким насосом, то для теплого пола придется приобрести еще одно устройство, оно будет работать отдельно. На радиаторы теплоноситель обычно подается с температурой 70-90 градусов, но для теплых полов его придется остудить до 35-40 градусов.

Вот каким образом осуществляется процесс подмеса остывшей обратки в системе с трехходовым краном:

  1. Горячая вода подается от котла.
  2. Теплоноситель проходит трехходовой клапан и попадает на контур, ведущий к коллектору теплого пола.
  3. Термодатчик фиксирует температуру жидкости.
  4. При показателях температуры выше нормы, срабатывает трехходовой клапан.
  5. Он открывается, начинается смешивание теплоносителя с потоком остывшей жидкости из обратки.
  6. Когда температура теплоносителя понижается до заданного уровня, клапан перекрывается.

Двухходовый вентиль перекрывает поступление в контур новой порции теплоносителя, пока циркулирующая по нему вода не остынет до необходимой температурной отметки.

Четырехходовые арматурные устройства для теплых полов делятся на две разновидности: Х-образные, работающие по принципу двухходовых кранов, и роторные, позволяющие производить смешивание горячего теплоносителя с обраткой в безукоризненно точных пропорциях.

Помимо насоса и клапана для установки и использования смесительного узла понадобится термодатчик, а также термостат, который отключит насос, если температура воды будет чрезмерно высокой.

Нередко смесительный узел продается вместе с коллектором, но если его в комплекте нет, придется приобрести и правильно установить необходимые элементы.

Галерея изображений Фото из Смесительный узел для обустройства теплых полов Техническая оснастка коллектора с узлом Трехходовый штоковый смеситель перед насосом Штоковые смесители в системах теплых полов Четырехходовый штоковый смешивающий прибор Смесительный узел с вентилем с сервопроиводом Расположение узла рядом с коллектором Смесительный узел заводской сборки

При этом следует соблюдать такой порядок: сначала ставят трехходовой клапан, затем – циркуляционный насос, после него подключают коллектор. При такой схеме насос будет подавать теплоноситель через клапан. Если поставить насос перед клапаном, последний просто не будет работать, поскольку поток будет просто направлен неправильно.

На трубу, по которой поступает остывший теплоноситель, необходимо поставить обратный клапан, чтобы холодная вода не поступала назад в систему.

Еще один полезный элемент, который обеспечит нормальную работу смесительного узла в системах с двухходовым краном – байпас. Если на коллекторе все отверстия будут закрыты, теплоноситель пойдет в систему по байпасу и будет циркулировать по замкнутому пути, пока не остынет.

В обогревательных системах с двухходовой запорно-регулирующей арматурой байпас – элемент обязательный. В системах с трех- и четырехходовыми кранами можно свободно обойтись без него. Правда вкупе с трехходовым краном байпас позволяет регулировать как количественные, так и качественные показатели теплоносителя.

Кроме байпаса в схему с двухходовым клапаном обязательно нужно включить балансировочный вентиль, с помощью которого регулируется объем текущего через байпас теплоносителя. Это устройство нужно для контроля за порциями остывшей воды, подмешиваемой к горячему теплоносителю.

Трехходовое смесительное устройство для водяного теплого пола устроен таким образом, чтобы контролировать температуру теплоносителя, смешивая потоки холодной и горячей воды

Комплекс устройств, который называют смесительным узлом, можно приобрести в магазине как готовый комплект. Но, по отзывам опытных мастеров, покупка отдельных узлов будет надежнее, да и обойдется дешевле. Системы с двуходовыми кранами и термостатами подходят для компактных контуров с небольшими котлами.

Выбирая трех- или четырехходовый клапан, следует учитывать его производительность и размеры площади, которую обслуживает система.

На малых площадях достаточно будет устройства, которое пропускает около 2 куб. м теплоносителя в час. Но если речь идет о площади свыше 50 кв. м, лучше взять смесительный кран с производительностью 4 куб.м в час.

Сверху на нем имеется регулировочный колпачок, с его помощью можно выставить температуру теплоносителя. Регулировка обязательна не всегда, поскольку изготовитель обычно выставляет этот показатель на приемлемом уровне.

Высокопроизводительные модели трехходовых клапанов бывают не только с колпачками, но и с сервоприводами. Но при подключении смесительного узла обязательно следует учесть особенности радиаторной системы отопления.

При подключении смесительного узла водяного теплого пола одновременно с однотрубной радиаторной системой отопления, байпас следует всегда оставлять в открытом положении

Байпас – необходимый элемент при установке смесительного узла. Специалисты рекомендуют установить на нем перепускной клапан. Это необходимо, чтобы при возникновении чрезмерного давления в системе часть теплоносителя была перенаправлена в обратку.

Важное условие для однотрубной системы отопления – байпас должен оставаться в открытом состоянии, чтобы на контур постоянно поступал поток теплоносителя. А вот при подключении к двухтрубной системе байпас следует закрыть.

Если же водяной пол служит основным способом отопления, то при желании можно и вовсе обойтись без установки смесительного узла.

Если водяной теплый пол устанавливают как вспомогательное отопление при двухтрубной радиаторной системе, то байпас должен быть закрыт

В таком случае функции регулятора температуры воды, поступающей на контур, выполняет термореле. В этом случае теплоноситель, нагретый до 70-90 градусов, будет сразу же попадать на систему теплого пола.

Как только этот горячий поток достигает обратки коллектора, установленное в этом месте термореле фиксирует повышенную температуру и останавливает циркуляцию теплоносителя. Когда вода остывает до заданной температуры, например, до 40 градусов, термореле срабатывает, и циркуляция возобновляется.

У этого варианта есть существенный недостаток – далеко не всякое напольное покрытие легко переносит нагрев до 80 градусов. Ни для паркета, ни для линолеума такой режим обогрева использовать нельзя, а вот для керамической плитки это вполне приемлемый вариант.

Еще один случай, когда смесительный узел не обязателен, это когда теплоноситель подогревается тепловым насосом, поскольку температура воды едва ли будет выше 40 градусов. Кстати, тепловой насос можно изготовить своими руками, существенно сэкономив на покупке дорогостоящего оборудования.

Цель использования коллектора

Коллектор – это устройство, с помощью которого поток теплоносителя распределяется по отдельным контурам водяного пола, а затем возвращается обратно для нагрева. Выглядит коллекторный узел как две трубы с отверстиями, к которым подключают контуры системы.

Наличие распределительного коллектора в схеме организации теплого пола предоставляет возможность контролировать объем потока теплоносителя. Одна из труб коллектора – подающая, на нее поступает горячая вода и к ней подключают входы контуров водяного пола.

Обратку контуров подключают к обратной трубе коллектора. Отверстия, к которым выполняется такое подключение, обычно оборудованы резьбовыми, фитинговыми или другими соединениями.

Коллектор состоит из ряда таких элементов, как собственно коллектор (1 и 2),переходник для крана Маевского (3); сливной кран (4); воздухоотводчик (5); клапан (6); кронштейн (7); евроконус (8)

Здесь же устанавливают различные устройства, при помощи которых можно регулировать показатели потока теплоносителя. Простейший вариант коллектора промышленного производства – это труба с соединителем, который называют евроконусом. Это вполне удобный и надежный узел, но он не позволяет управлять потоком воды.

Чтобы эффективно использовать такое устройство, придется дополнительно приобрести и установить ряд элементов.

Чуть сложнее устроен коллектор производства КНДР. Помимо соединений на выходных отверстиях здесь установлены вентильные краны, никаких автоматических средств регулирования потока не предусмотрено. Это отличный и недорогой вариант для водяного пола на небольшой площади с двумя-тремя контурами одинаковой длины.

Такая система не требует сложного управления. Но на больших площадях коллектор этого типа придется дополнить автоматикой.

Кроме того, межосевое расстояние между подающей и обратной секцией у китайских устройств не соответствует стандартам, принятым в Европе, что может вызвать проблемы при соединении его с приборами европейского производства.

Шаровые краны в таких устройствах чувствительны к воде низкого качества, со временем они начинают протекать. Чтобы устранить проблему, достаточно заменить уплотнительные кольца, но нужно считаться с тем, что необходимость в таком ремонте периодически будет возникать.

Если работу системы водяного пола предполагается автоматизировать, имеет смысл приобрести как минимум коллектор с регулировочными вентилями.

На такие вентили можно установить сервоприводы, соединенные с термостатами в комнатах. Это обеспечит автоматическое управление потоком теплоносителя в соответствии с данными о температуре воздуха в конкретном помещении.

Чтобы автоматизировать работу системы водяного теплого пола на подаче коллектора устанавливают расходомеры (обозначены рамкой), а на обратке ставят разъемы для сервоприводов (синие колпачки внизу)

Сложнее всего управлять системой водяного пола, в которой отдельные контуры заметно различаются по длине, но в сложных системах обычно так и бывает. В такой ситуации оптимальным выбором станет коллектор, на подаче которого установлены расходомеры, а на обратке – гнезда, предназначенные для монтажа сервоприводов.

С помощью расходомеров можно будет отрегулировать интенсивность потока теплоносителя, а сервоприводы в связке с термостатами позволяют установить подходящую температуру на каждом контуре.

Если необходимости в автоматическом регулировании нет, можно приобрести коллектор подачи с расходомерами, а обратный – с обычными вентильными кранами.

Бывает так, что не получается выбрать коллектор с количеством гнезд для подключения, которое соответствует проекту. Тогда можно взять устройство “с запасом”. А лишние отверстия просто закрывают заглушками.

Такое решение может оказаться полезным, если позднее понадобится добавить к системе водяного пола еще пару петель.

Особенности монтажа водяного пола в многоэтажке

Считается, что сооружение системы водяного пола в высотных домах невозможно, но это не совсем так. На практике реализация такого проекта может быть реализована, но требует согласования с поставщиком услуг центрального отопления. Устроить их можно исключительно на первых этажах зданий.

Как сделать водяной пол в многоэтажном доме?

Здесь используются два варианта: полная замена радиаторной системы водяным полом или монтаж дополнительной системы отопления наряду с эксплуатацией радиаторов.

Оптимальное место подключения системы водяного теплого пола в многоквартирном доме – это место, где обратка общего стояка соединяется с магистралью, отводящей теплоноситель в котельную

В первом случае необходимо тщательно рассчитать расход теплоносителя в новой системе, поскольку он должен соответствовать прежним объемам. Необязательно реконструировать все отопление в квартире, можно ограничиться только одной комнатой.

Если водяной пол играет роль вспомогательного отопления, понадобятся тепловые счетчики. Кроме того, нужно уточнить, может ли централизованная система отопления перекрыть возросшие мощности и расход теплоносителя.

Если в высотном доме имеется радиаторная система с верхней разводкой, то подключение водяного пола лучше всего выполнить в месте соединения обратки общего стояка с магистралью, ведущей к котельной. Перед водяным полом обязательно ставят фильтры.

Это необходимо, учитывая низкое качество теплоносителя в отечественных централизованных системах, иначе контур теплого пола очень скоро засорится.

Фильтры следует регулярно чистить. Они более чем актуальны при прямом подключении к системе ЦО, но использование теплообменника помогает сделать проблему засоров менее острой, а работу водяного пола – более стабильной.

Но при этом понадобится смонтировать расширительный бак, теплообменник, группу безопасности и фильтр.

Тонкости монтажа коллектора

При монтаже коллектора водяного пола подающую часть устройства необходимо ставить выше обратки. Можно сделать и наоборот, но большого смысла такая перестановка не имеет.

Коллектор будет работать, просто при верхней обратке часть тепла с подающей части будет передаваться обратному потоку, т.е. тепловая энергия просто теряется.

Крайне важно при сборке и монтаже коллекторного узла водяного пола соединить все элементы этого устройства в правильном порядке, например, используя эту схему

Важный момент – установка расходомеров. Их следует устанавливать именно на подающую часть, на “обратке” эти элементы бесполезны.

Помимо коллекторов, расходомеров и сервоприводов с термодатчиками для монтажа понадобится сливной кран, а также кран Маевского с переходником, соединительные элементы для труб водяного пола, отсечной клапан и т.п.

В отличие от коллекторов отопления при монтаже водяного теплого пола расходомеры всегда устанавливают на подаче, а на обратку ставят сервоприводы с терморегуляторами

Для установки всех этих устройств предназначен коллекторный шкаф. Это металлический ящик с дверцами, внутри находятся регулируемые направляющие. Такое устройство существенно облегчает монтаж, но стоит недешево.

Поэтому, если в районе места установки имеется ниша подходящих размеров, можно использовать ее.

Если коллектор монтируется без специального шкафа, его нужно подвешивать на кронштейнах. Что касается места установки коллектора, то в этом отношении действует правило: чем выше, тем лучше, т.е. монтировать коллектор лучше всего в верхней точке системы.

Шкаф для коллектора – очень удобное устройство, облегчающее монтаж системы водяного теплого пола. Но если есть желание сэкономить, его можно заменить нишей в стене

Это связано с необходимостью удалять из системы попавший в нее воздух, для чего в верхней точке коллектора устанавливают кран Маевского. Кроме того, лучше всего установить коллектор на равном удалении от всех помещений, т.е. поближе к центру системы, чтобы длина отдельных контуров различалась минимально.

К одному коллектору обычно можно присоединить только девять отдельных колец теплого пола. Если же обогревательная система слишком сложная и нужно смонтировать более девяти контуров, понадобится два или более коллекторов.

В многоэтажном доме поставить коллектор вверху удается не всегда. Тогда можно поместить его и ниже, даже в подвале. Но проблему выведения из системы избыточного воздуха придется решать иначе.

Кран Маевского на самом коллекторе будет бесполезен. Устройство для отведения воздуха вместе с установленным перед ним запорным клапаном придется установить на обратке каждого контура.

Монтаж выполняют на участке между трубой и коллектором, к крану Маевского следует обеспечить свободный доступ.

Таким образом, если коллектор установлен слишком низко, вместо одного крана Маевского понадобится столько воздухоотводчиков, сколько контуров будет уложено. Плюс такое же количество запорных кранов.

Монтаж коллектора проводят по следующей схеме:

  1. Установка коллекторного шкафа или подготовка специальной ниши.
  2. Сборка коллектора, установка дополнительных модулей: сервоприводов, расходомеров и т.п.
  3. Соединение подачи коллектора с трубой, ведущей от котла.
  4. Установка запорного крана на обратку коллектора.
  5. Установка коллектора в шкаф/нишу.
  6. Присоединение труб к подающей и обратной части.
  7. Монтаж смесительного узла.
  8. Проверка качества монтажа, устранение недостатков.

Обычно установку коллектора начинают еще до начала укладки труб и заливки стяжки, поэтому нужно учитывать, что по окончании работ уровень пола заметно поднимется. Коллекторный шкаф уже учитывает этот момент.

Но когда монтаж выполняется с помощью кронштейнов, устройство следует поставить примерно в одном метре от чернового пола.

Не стоит устанавливать коллектор водяного теплого пола слишком низко, недостаток пространства может создать проблемы при подключении труб к разъемам

Не стоит подвешивать коллектор слишком низко, такое положение может затруднить процесс подключения труб. Соединение с полипропиленовыми трубами, которые ведут от котла, выполняют с помощью разъема, на котором есть гайка для резьбы коллектора и муфта для полипропиленовых труб.

Воздухоотводчик нужно установить в верхней точке коллектора, и его головка будет направлена вверх. Но головки таких элементов как расходомеры и сервоприводы при правильной установке будут направлены вниз.

Обычно резьба на коллекторе сделана на три четверти дюйма, а краны Маевского имеют полудуюймовую резьбу, поэтому нужно использовать переходник. Материал переходника должен соответствовать материалу коллектора.

На обратном патрубке коллектора имеется две резьбы, одна из них нужна для подключения к нагревательному котлу, а вторая – для установки запорного крана.

Все резьбовые подключения нуждаются в уплотнении, которое может быть реализовано с помощью уплотнительного кольца или, если такое кольцо отсутствует, подмоткой пакли, льняной нити, ФУМ-ленты и т.п.

При сборе смесительного узла для водяного теплого пола все резьбовые соединения следует тщательно уплотнить с помощью ФУМ-ленты или других материалов

При присоединении металлопластиковой трубы к разъему коллектора нужно край трубы развальцевать и зачистить. Эта мера сохранит уплотнители от случайного повреждения.

После этого на трубу следует надеть накидную гайку, затем – обжимную шайбу, аккуратно присоединить трубу к разъему, закрутить гайку руками, а затем осторожно подтянуть разводным ключом.

Перед коллектором или после него следует установить смесительный узел. Если установка этого узла по некоторым причинам не предусмотрена, вместо него монтируют байпас с запорным краном.

Смесительный узел обычно крепят с помощью накидных гаек. Такие элементы требуют обязательного использования резиновых прокладок.

Изготовление самодельного коллектора

Чтобы сделать коллектор из полипропиленовых труб, рекомендуется использовать конструкции диаметром 32 мм или 25 мм, соответствующие им тройники и запорные вентили.

Сколько будет подключено петель теплого пола, столько тройника и вентилей понадобится для коллектора. Также нужно будет приобрести циркуляционный насос и клапан для смесительного узла.

Если система водяного теплого пола не нуждается в серьезном автоматическом регулировании, можно сделать коллектор самостоятельно или приобрести простую модель с обычными запорными кранами

Для пайки труб нужен специальный паяльник, а также хотя бы минимальный опыт использования такого оборудования. Из тройников и труб формируют подающую и отводящую секцию коллектора. Отрезки труб должны быть очень короткими, чтобы тройники разделялись совсем небольшим пространством.

После этого припаивают запорные краны, а также фитинги для присоединения к насосу и т.п. Такое простое устройство обойдется недорого, если не устанавливать расходомеры и прочие управляющие элементы.

Но более продвинутый коллектор из пластика проще купить, чем сделать, стоимость такого прибора невелика.

Выводы и полезное видео по теме

Интересный материал по сборке и установке смесительного узла:

Ролик демонстрирует процесс сборки комплекта элементов коллектора:

О самостоятельном изготовлении недорогого коллектора рассказано в этом видео:

Распределительные как и смесительные узлы – очень важные элементы для водяного пола. Обойтись без них можно, только если система включает всего один-два контура и занимает небольшую площадь.

Но если принято решение создать качественный водяной пол, тогда все эти узлы необходимо собрать и установить правильно, чтобы система работала с максимальной отдачей и минимальными затратами.

Вы занимаетесь монтажом водяного пола не первый год и на практике знакомы со всеми тонкостями этого процесса? Поделитесь своим опытом в комментариях к статье – начинающим монтажникам эта информация будет чрезвычайно полезна.

При устройстве водяного теплого пола используется различное количество конструктивных элементов, которые необходимы в обязательном порядке, или без которых система работает неправильно и не оптимально. К ним относится и смесительная группа для теплого пола. Для чего необходим этот элемент и возможно ли соорудить смесительный узел для теплого пола своими руками? Рассмотрим эти вопросы подробнее.

Необходимость смесительных узлов в системе теплого пола

При устройстве водяного отопления с использованием радиаторов или другого высокотемпературного оборудования, теплоноситель может на них подаваться практически любой температуры, которую способен выдать котел. Но ситуация с тёплыми полами кардинально отличается. По строительным нормам и здравому смыслу существует ограничение максимальной температуры поверхности пола. Превышение которой делает эксплуатацию системы не комфортной и даже опасной.

Например, по СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха» максимальная температура пола, в котором используется система встроенного подогрева не может превышать:

  • 26 °C для комнат с постоянным пребыванием людей;
  • 31 °C для комнат с временным пребыванием людей и некоторых зон крытых плавательных бассейнов;
  • 23 °C для дошкольных учреждений.

Эти ограничения затрудняют использование котла без смесительного узла для теплого пола. Так как без него теплоноситель неизбежно будет поднимать температуру теплого пола выше граничного значения. А температура теплоносителя может достигать уровня выше 80 °C.

Смесительный узел теплого пола в таком случае позволяет подавать в трубы теплоноситель оптимальной температуры. Принципиально ли его применение и можно ли выйти из положения без него?

Обязательность использования смесительных узлов

Как мы уже определились, основная цель смесительного узла – это поддерживать температуру воды в системе на требуемом уровне. Для этого берется часть воды от котла с повышенной температурой и смешивается с некоторым количеством воды из «обратки» до достижения требуемого уровня, который позволяет достичь оптимальной температуры пола.

Если исключить из схемы насосно-смесительный узел для теплого пола, то необходимо обеспечить поддержку температуры другим способом. Как вариант, возможно применение низкотемпературного котла, который способен обеспечивать температуру подаваемой воды в районе 35-38 °C, чтобы поддерживать требуемый нагрев пола. Чаще всего для этих целей рекомендуют электрокотлы. Также в таком режиме работают водяные тепловые насосы.

Схема теплого пола без смесительного узла.

Следует также иметь в виду, что теплый пол без смесительного узла практически невозможно использовать при комбинации напольного и радиаторного нагрева, так как для радиаторов температура должна быть достаточно высокой, чтобы обеспечивать оптимальную теплоотдачу. Если же теплый пол используется как основной источник, то при применении хорошего котла с подходящими характеристиками смесительный узел может не использоваться.

Итак, если необходимость смесительного узла не ставится под сомнение, как поступить в таком случае? Можно применить изделие заводского изготовления, которое рассчитано и протестировано для бесперебойной работы, но основным недостатком таких систем является их дороговизна.

Как вариант можно использовать самодельный смесительный узел для теплого пола. Основное его преимущество – существенно меньшая цена. В среднем, такой узел выходит в 3-4 раза дешевле, чем заводского изготовления, но возникают вопросы в его расчете и подборе элементов. Ведь при неправильном подборе теплый пол будет работать неравномерно или вообще его эксплуатация будет существенно затруднена.

Как создать своими руками смесительный узел? В общем, основные задачи при такой постановке вопроса сводятся к следующим пунктам:

  • выбрать схему и конструкцию смесительного узла;
  • подобрать необходимые элементы;
  • рассчитать производительность насоса и характеристики других изделий;
  • смонтировать узел.

Принципы монтажа ничем не отличаются от создания отопительной сети. Основное внимание нужно уделить расчету, выбору схемы и подбору оборудования. На чем и будем акцентировать внимание далее.

Схемы смесительных узлов

Схема смесительного узла теплого пола разрабатывается таким образом, чтобы грамотно получить теплоноситель требуемой температуры. Все существующие современные схемы смесительных узлов разделяются на две большие группы:

  • параллельные;
  • последовательные.

Это разделение проходит по схеме движения теплоносителя. Чем отличаются оба типа?

Параллельные

Параллельная схема смесительного узла для теплого пола конструируется таким образом, что после смешения вода нужной температуры подается не только на сам тёплый пол, но и в контур отопительного прибора. Это накладывает особенности на функционирование. Так как часть подготовленного теплоносителя не попадает в сеть теплого пола, необходимо применение насоса большей производительности.

Параллельная схема.

Последовательные

Для функционирования последовательной схемы необходим насос меньшей производительности, чем при использовании такой же схемы параллельного типа. Это связано с тем, что после смешения весь подготовленный объем теплоносителя циркулирует непосредственно в контуре теплого пола. В общем, такая схема более подходящая и чаще всего используется в современных условиях.

Последовательная схема.

Для понимания разницы между каждой схемой можно ознакомиться с рисунками.

Элементы и комплектующие

Для создания всех описанных схем используется некоторое количество запорно-регулирующей арматуры и комплектующих. Часть элементов обязательна, такие как циркуляционный насос, часть используется при необходимости. В общем в большинстве изготавливаемых узлов применяют:

  • циркуляционный насос требуемой производительности;
  • регулировочный клапан (2-х или 3-х ходовой) с термоголовкой или термостатический клапан;
  • термометры подачи и обратного теплоносителя (не обязательно);
  • перепускные, балансировочные и запорные клапаны;
  • шаровые краны;
  • воздухоотводчики.

Основными элементами являются регулировочные клапаны и насос, работа которых и позволяет получить теплоноситель требуемой температура в необходимом количестве.

Клапаны и краны

Узел подмеса воды для теплого пола обязательно включает в себя клапанные краны. Рассмотрим особенности и сферу применения некоторых из них:

3-ходовой клапан представляет собой устройство, которое используется для смешивания, разделения, или переключения потоков воды или другого теплоносителя между собой. В применении к смесительным узлам их основная задача – создать смесь с необходимой температурой для подачи в сеть теплого пола с использованием горячего потока от котла и охлажденного теплоносителя из обратного трубопровода.

3-х ходовой клапан с термоголовкой.

Двухходовой клапан способен изменять расход теплоносителя из одного источника. То есть при его использовании регулируется поток. При уменьшении сечения клапана, объем проходящего через него теплоносителя уменьшается, а необходимое для работы насоса количество воды забирается из другого трубопровода.

2-х ходовой клапан.

Любой из описанных клапанов представляет собой просто запорный механизм, регуляция которого возможна некоторыми методами. Самый простой – ручной, когда поток перекрывается с помощью вентиля. Но для смесительных узлов в теплых полах это практически не применяется, так как автономность такой системы сомнительна.

Чаще всего применяются термоголовки, которые автоматически регулируют степень открытия клапанов в зависимости от показаний термодатчика, который крепится к подающему или обратному трубопроводу. Возможно также использование сервоприводов.

Существуют также термостатические трехходовые клапана, к которым подсоединяются две ветки с разной температурой и из которых отходит теплоноситель с заранее выбранной температурой. В таком клапане регуляция температуры осуществляется встроенными в корпус прибора датчиками. В отличие от выносного датчика, как в термоголовках с 3-х ходовым клапаном.

Термостатический трехходовый клапан

При выборе как 3-х ходового, так и двухходового клапана важно иметь представление о такой характеристики как пропускная способность (Kvs, Kv). Она означает, какой максимальный поток теплоносителя способен в полностью открытом положении пропустить через себя клапан при перепаде давления 1 Бар. Kvs клапана стандартизирован и указывается в характеристиках – 1,0, 1,6, 2,5, 4,0, 6,3, 10…

В общем Kvs зависит от расхода жидкости и перепада давления на клапане. Для этого используют формулу Kvs=G-√dp, где dp корень из перепада давления на клапане, G – расход воды.

Для примера можно сказать что для теплого пола площадью приблизительно 50 м² с потерей давления около 8 кПа обычно хватает клапана с Kvs 1.6. При аналогичной системе 150 м² и 10 кПа уже нужно использование трехходового клапана с Kvs 4.0.

Насос

Обязательным элементом смесительного узла является насосная группа для теплого пола, который подбирается таким образом, чтобы обеспечить подачу расчетного количества теплоносителя на теплый пол. При выборе также учитывается потери давления в самой длинной петле теплого пола. Потери зависят от длины ветки наличия кранов и вентилей, поворотов и других элементов, которые создают сопротивление движению теплоносителя. Для расчета удобно использовать специальные программы, которые разрабатывают производители теплых полов или использовать формулы из справочников.

Расчет теплоносителя в контуре теплого пола можно рассчитать по такой формуле:

Q=3600⋅P/c⋅(tп-tо), где P – мощность всех петель теплого пола; с – теплоемкость (для теплоносителя – воды она составляет 4,2 кДж/кг); tп и tо – расчетная температура подающего и обратного трубопровода. Обычно, разница не должна превышать 10 °C.

Например, при температуре подающего и обратного трубопроводов 35 и 25 °C, и мощности системы 8 кВт расход теплоносителя будет составлять: G=3600⋅8/4,2⋅(10) = 685 л/ч (0,685 м³/ч).

По найденному расходу и заранее рассчитанным потерям давления в сети по номограммам насосов выбираем модель требуемой производительности.

Выбор насоса по номограмме.

Для учета потерь давления необходимо провести гидравлический расчет теплого пола. Для этого учитывают много параметров – длину петель, диаметр, количество и характеристики всех местных сопротивлений (отводы, клапаны, повороты, и т. д.). Для упрощения расчета многие производители предоставляют специальные программы.

В общие потери входит:

  1. Потери давления в трубопроводе. Они зависят от длины самой протяженной петли теплого пола, скорости движения воды в ней и диаметра и материала трубы. Выше мы нашли общий расход теплоносителя, проходящий через насос. Его количество в каждой петле может разниться от характеристик коллектора, настроек регулирующих клапанов и т.д., но для приблизительного расчета можно использовать значение 0,04 л/мин. То есть, если у вас ветка длиной 50 м, то расход для нее должен составлять приблизительно 2 л/мин. По этому значению и по потере давления на одном метре используемого трубопровода находим общие потери давления в петле. Удельные потери давления на 1 метре трубопровода находятся по номограмме потерь для конкретной трубы, которую можно найти в документации к изделию. Если там указана для трубы удельная потеря в 1 Па, то на 50 м будет 50 Па. Таким же образом учитываем потери на каждом участке прямого трубопровода, входящем в наиболее нагруженную петлю.
  2. Потерь давления на каждом сопротивлении расчетного участка. Они находятся по формуле dP=S⋅(V²/2) ⋅r. Где dP – потери давления на всех местных сопротивлениях, S – сумма коэффициентов местных сопротивлений, V – скорость теплоносителя, r – плотность теплоносителя. Коэффициент местного сопротивления для каждого фитинга указан в документации к нему или в справочной литературе. Учитывать нужно все клапана, тройники, и другие элементы.

Общие потери давления состоят из суммы потерь на трубопроводах и местных сопротивлениях. После того, как для конкретной сети подсчитаны все эти параметры, будут найдены общие потери, которые и служат основой для выбора насоса. Нужно иметь ввиду, что для давления используют несколько единиц, каждая их которых может быть указана в номограмме, а иногда и несколько сразу, например, килопаскали (кПа), метры водяного столба (Н). При необходимости их можно перевести по формуле — 1 метр водяного столба = 9,8 кПа.

Конструкции смесительных узлов

Рассмотренные выше схемы показывают лишь принцип циркуляции теплоносителя в отопительных контурах. Для каждой схемы используются разные конструкции смесительных узлов. Причем в каждой из двух типов существует довольно большое количество разнообразных конструкций которые используют разное оборудование и комплектации.

В общем, по конструкции все схемы смесительных узлов можно разделить на такие изделия:

  • на 3-ходовых клапанах;
  • на 2-ходовых клапанах.

Каждая из этих конструкций может быть изготовлена с использованием разных элементов в разной последовательности и с разным расположением. Так как последовательные схемы смесительных узлов более распространены и чаще применяются при самостоятельном изготовлении, больше внимания уделим им.

На 2-х ходовых клапанах

На 2-х ходовых клапанах также реализуют схемы с параллельным и последовательным смешением. Пример узла представлен на изображении.

Схема последовательного смешения с 2-х ходовым клапаном.

Выбор клапана и схемы расположения проводят в основном исходя из возможной компоновки узла, места для него и других характеристик системы. Нельзя сказать, что узел на 3-х ходовом клапане работает лучше, или наоборот.

На трехходовых клапанах

Если используется смеситель для теплого водяного пола на базе 3-х ходового клапана схема проектируется чаще всего как последовательная. В таком случае трехходовой клапан может быть установлен как на подающей ветке, так и на обратной.

Схема последовательного смешения с 3-х ходовым клапаном.

В первом случае он работает как клапан смесительного типа, в котором поток воды из обратного трубопровода смешивается с подающим и дальше прокачивается насосом в ветки теплого пола. При установке клапана на «обратке» он выполняет функции разделителя потока.

На перемычке между подающим и обратным трубопроводом возможна установка обратного клапана, который будет перекрывать поток в случае остановки насоса, но при открытом трехходовом. Такая ситуация возможна при реализации функции регулирования теплого пола насосом. Этот клапан также можно устанавливать и в схемах с двухходовым клапаном или в узле параллельного смешения.

Схема параллельного смешения с 3-х ходовым клапаном.

Для смешения и разделения используются два разных изделия, которые не взаимозаменяемы. Для маркировки на корпусе клапана указана схема движения воды.

Разделительный и смесительный клапаны.

Регуляция температуры

Узел подмеса для теплого пола работает с грамотным контролем температуры. Для этого используются термоголовки, термодатчики от которых крепятся к подающему или обратному трубопроводу. Какой вариант лучше выбрать? Каждый из них отличается нюансами.

Если регуляция будет проходить по температуре подающего трубопровода, то в ветки теплого пола будет подаваться теплоноситель постоянной температуры. Если термодатчик установить на «обратке», то постоянной будет именно температура в обратном трубопроводе. Во втором варианте в зависимости от увеличения или уменьшения теплосъема, похолодания или потепления температура подающего теплоносителя будет меняться. При этом средняя температура самой поверхности пола обычно более равномерна, чем в первом варианте.

Многие производители теплотехнического оборудования представляют программные продукты, для упрощения выбора насосов, клапанов и других приборов. Без того, чтобы изучать сложные формулы и таблицы.

После того как выбрана схема, комбинация комплектующих и характеристики насосов и клапанов приступают к сборке с соблюдением всех норм монтажа отопительного оборудования.

Совет! Если вам нужны мастера по ремонту, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает. Хорошая реклама Самое читаемое

Основные задачи

Обычные системы отопления считаются высокотемпературными. Большинство водонагревательных котлов рассчитаны на радиаторы и конвекторы, способные выдерживать нагрев до 90°С. При этом средние температурные показатели в системе обычно поддерживаются на уровне 75°С.

Чтобы поддерживать комфортную температуру теплого пола, устанавливают насосные узлы

Это слишком много для водяного обогрева напольного покрытия по следующим причинами.

  1. Такая температура будет некомфортной. По полу банально будет неприятно ходить. Его нагрев не должен превышать 30°С.
  2. Ни одно напольное покрытие не сможет долгое время выдерживать высокую температуру. Со временем оно вспучится, начнет растрескиваться и утратит свой первоначальный вид.
  3. Излишний нагрев негативно сказывается на бетонной стяжке, в которую укладываются трубы. Она разрушается.
  4. Для создания оптимального микроклимата в доме водяному обогреву напольного покрытия не нужны повышенные температурные показатели.

Современные отопительные котлы способны поддерживать нагрев теплоносителя в определенном диапазоне. Ставить отдельный бойлер экономически невыгодно. Обычно систему теплого пола подключают к общему с радиаторами трубопроводу.

Как сделать коллектор для теплого пола своими руками:

В этом случае единственным разумным решением будет установка насосного узла для теплого пола. Он позволит смешивать горячую воду с теплоносителем, который уже отдал большую часть тепловой энергии. Тем самым можно регулировать необходимую температуру напольного покрытия.

Люди делают то же самое вручную в ванной комнате и на кухне, когда открывают горячий и холодный кран, чтобы получить воду необходимой температуры. Естественно, узел подмеса для отопления имеет более сложное устройство, чем смеситель на кухне. Его главная задача — обеспечение сбалансированной циркуляции воды в контурах системы. Также он должен точно отбирать необходимое количество теплоносителя из труб и при необходимости замыкать поток в кольцо. Хороший узел должен самостоятельно корректировать свою работу, чтобы человеку не приходилось регулировать уровень нагрева вручную.

Читать так же: подключение теплого пола к системе отопления.

Прибор, удовлетворяющий таким требованиям, должен быть сложным, поэтому большинство людей покупает в магазинах готовые решения. Выглядят такие узлы превосходно и функционируют не хуже, но цены на них слишком высоки. Из-за этого все же находятся люди, которые после изучения всей имеющейся информации собирают узел подмеса для теплого пола своими руками. Оказывается, это не такая уж сложная задача.

Смесительный узел для теплого пола:

Принцип работы

Все смесительные узлы работают по одному принципу. Поток нагретой воды проходит по контуру и останавливается предохранительным клапаном, расположенным в распределительном коллекторе. Клапан подключен к термостату или датчику, снимающему температурные показатели.

Благодаря насосно-смесительным узлам, система теплого пола работает равномерно

Если температура теплоносителя слишком высока, то клапан открывает заслонку для доступа в систему холодной жидкости. Она подмешивается к горячей воде. При низких температурах происходит обратный процесс. При достижении заданной температуры клапан перекрывается и поступление разогретого теплоносителя прекращается.

Узел подмеса не только контролирует температуру жидкости, но и регулирует ее циркуляцию в системе. Выполнение этих двух функций обеспечивается 2 основными элементами: предохранительным клапаном и насосом циркуляции. Последний является ключевым элементом системы. Именно благодаря ему пол прогревается равномерно.

Подробнее о насосно-смесительном узле для теплого пола:

К второстепенным элементам относятся:

  • байпас;
  • воздухоотводчики;
  • перекрывающие и дренажные клапаны.

Наличие того или иного элемента определяется задачами и целями системы. Узел всегда устанавливается до входа в общий контур. При этом точное его местоположение не регламентируется.

Отличия различных систем

Разные смесительные узлы имеют похожую конструкцию. Принципиальные различия заключаются в использовании разных предохранительных клапанов. Самыми распространенными считаются двух- и трехходовые клапаны.

Первый тип питающего устройства оснащается термостатической головкой. В нее встроен температурный датчик жидкостного типа. Информация, идущая с него, позволяет регулировать интенсивность потока разогретого теплоносителя.

Двухходовый клапан применяется в таких системах, где в обратку постоянно добавляется горячая жидкость от котла. Такой подход исключает перегрев теплого пола и продлевает срок его безаварийной работы.

Существуют двухходовые и трехходовые насосные узлы

Такой клапан не отличается высокой пропускной способностью. Значит, регулировка температуры происходит плавно. Его рекомендуется использовать в помещениях с небольшой площадью пола.

Второй тип питающего устройства представляет собой комбинированный вариант. В нем сочетаются функции клапана и балансировочного крана. Работает он иначе, чем двухходовое устройство. Благодаря ему, в горячий теплоноситель поступает охлажденная вода из обратки.

Трехходовый клапан часто подключается к внешним термостатам. Последние позволяют устанавливать нагрев жидкости с учетом уровня уличной температуры воздуха. Подача воды в нем регулируется заслонкой, расположенной на стыке труб, идущих от котла и обратки.

Трехходовые устройства считаются более современными и производительными. Поэтому их по умолчанию устанавливают в системах, имеющих несколько нагревательных контуров, обогревающих помещения большой площади.

У таких клапанов есть несколько недостатков:

  1. Существует риск резкого повышения температуры теплоносителя в системе, если из котла будет поступать больше жидкости, чем из обратки.
  2. Из-за большой пропускной способности трехходового устройства даже при небольшом изменении положения заслонки температура значительно повышается. Нет возможности тонко регулировать нагрев пола.
  3. В крупных помещениях требуется обязательная установка внешних датчиков, отслеживающих температуру на улице. В противном случае обеспечить комфортные условия внутри здания невозможно.

Впрочем, необходимость установки термостатов можно рассматривать и как положительный момент, ведь они обеспечивают лучшую регулировку температуры. Кроме того, с их помощью можно понижать нагрев в помещениях, где людей нет. Это может значительно снизить расходы на отопление.

Варианты схем

Существует несколько вариантов присоединения смесительного узла к котлу. Они отличаются типом используемого клапана и видом подключения циркуляционного насоса. Последний может присоединяться к системе последовательно или параллельно.

Схема смесительного узла для теплого пола

Двухходовый термоклапан и последовательное соединение

Эта схема самая простая и потому популярная. Чтобы собрать такой насосно-смесительный узел своими руками, понадобятся следующие элементы:

  1. Запорные шаровые краны. Они нужны для полного отключения теплого пола от общей системы. Это необходимо при проведении профилактики или ремонта.
  2. Фильтр грубой очистки. Некоторые мастера отказываются от него, но специалисты рекомендуют все же устанавливать, так как он повышает сроки службы оборудования.
  3. Термометры. Они позволят визуально контролировать и при необходимости осуществлять отладку узла.
  4. Двухходовый клапан. Он ничем не отличается от приборов, устанавливаемых на радиаторах отопления. Его задача — регулировка потока горячей воды, поступающей в систему.
  5. Термоголовка. По сути, это насадка с датчиком температуры. Она надевается на питающее устройство и управляет его работой.
  6. Сантехнические тройники. Их используют для создания байпаса, в котором будет осуществляться отбор холодной или горячей воды.
  7. Балансировочный кран. У него одна-единственная задача — точная настройка теплого пола.
  8. Циркуляционный насос. Этот самый важный элемент. Он должен иметь несколько режимов работы, чтобы точно регулировать обогрев.
  9. Обратный клапан, предотвращающий появление обратного потока теплоносителя.

Многие люди считают, что клапан не нужен. Но лучше подстраховаться. Этот элемент спасет систему от поломки, если циркуляционный насос вдруг начнет подсасывать воду из обратки при закрытом термоклапане.

В схеме с двухходовым питающим устройством и параллельным соединением циркуляционного насоса обратка и подача от котла меняются местами. Сам насос размещается на байпасе. К такому решению прибегают, когда требуется разместить узел подмеса компактно. Но за меньшие габариты приходится платить сниженной производительностью.

Трехходовый клапан и параллельное подключение

Если сравнивать эту схему с аналогичной, но на двухходовом клапане, то изменения будут незначительными. Вместо тройника и упрощенного питающего устройства устанавливается трехходовый смеситель. Причем устанавливается он в верхней точке над насосом.

Трехходовой клапан более незначителен в размерах

Управление системой осуществляется с помощью той же термоголовки, имеющей выносной температурный датчик. Потоки теплоносителя смешиваются внутри смесителя. Его заслонка устроена таким образом, что приоткрытие одного канала приводит к соразмерному закрытию другого.

При последовательном расположении циркуляционного насоса с трехходовым термоклапаном происходит смешение приходящих по одной трубе потоков, дальнейшее перенаправление теплоносителя нужной температуры через центральный патрубок.

Преимущество такой схемы заключается в более компактных размерах. В остальном она ничем не отличается от параллельного подключения.

Стоит отметить, что существуют более сложные схемы подключения, но реализуются они только в смесительных узлах заводского производства. Собирать их своими руками слишком сложно. В подавляющем большинстве случаев для обогрева полов в доме хватает упрощенных схем.

Что касается подробной инструкции по сборке узла, то ее нет и не может быть. Человек, решивший установить его в своем доме, должен владеть навыками сантехнического монтажа и понимать, как работает система.

Если у него есть необходимые знания, то подобрать необходимые комплектующие и собрать их в единое устройство не составит труда. Когда таких знаний и навыков нет, то даже не стоит пытаться собрать узел подмеса самостоятельно, никакая инструкция не поможет.

admin