Что такое стабилитрон

Что такое стабилитрон


Как работает стабилитрон.

Стабилитрон — специальный диод, который способен работать в условиях обратного смещения в зоне пробоя без какого-либо ущерба для себя.

Обратите внимание на основы электричества и на приборы электроники.

Принцип действия стабилитрона

График напряжение-ток для стабилитрона похож на график напряжение-ток для P-N перехода обычного диода.

Когда стабилитрон имеет прямое смещение, то, также, как и в любом обычном диоде, ток, проходящий через него, возрастает при увеличении подаваемого напряжения. Когда же стабилитрон имеет обратное смещение, то ток бывает минимальным до того момента, пока подаваемое напряжение не достигнет значения напряжения пробоя для данного диода. Когда такое напряжение достигается, то происходит значительное увеличение протекающего тока. Однако, в отличие от обычного диода, стабилитрон предназначен для работы в условиях обратного смещения в зоне пробоя.

Напряжение стабилитрона

Необходимое напряжение стабилитрона — это то напряжение, при котором происходит пробой. В процессе изготовления стабилитрона, к основным исходным материалам добавляют определенное количество других материалов, присадок, так что во время работы данного прибора пробой происходит при совершенно конкретном значении напряжения.

Если подаваемое на стабилитрон напряжение превышает установленное для него напряжение пробоя на достаточно большую величину, то тепло, которое сопровождает прохождение через стабилитрон чрезмерного тока, может вызывать серьезные повреждения. Для того, чтобы предотвратить подобные неприятности, цепи со стабилитроном обычно имеют установленный последовательно резистор, который должен ограничивать величину тока, протекающего через стабилитрон. Если выбрано правильное значение сопротивления, то ток в цепи не будет превышать максимальное значение тока для стабилитрона.

Если же подаваемое напряжение меньше, того, на которое рассчитан стабилитрон, то сопротивление протеканию тока будет значительным и этот диод будет оставаться в основном в разомкнутом состоянии, однако, когда подаваемое напряжение станет равно или превысит расчетное напряжение стабилитрона, то сопротивление тока окажется преодоленным, и ток потечет через стабилитрон и по цепи.

При различных значениях напряжения выше напряжения стабилитрона, изменение внутреннего сопротивления возникает в результате изменений обедненной области прибора. В результате этого падение напряжения на стабилитроне будет относительно постоянным. Падение напряжения должно поддерживаться на уровне, близком к значению напряжения стабилитрона. Остальное напряжение источника электропитания понижается на последовательно подключенном резисторе.

Поскольку напряжение на стабилитроне значительно превышает напряжения стабилитрона, то цепь, которую мы только что описали, может быть использована для обеспечения подачи регулируемого напряжения на нагрузку. Если нагрузка включена параллельно со стабилитроном, то падение напряжение на нагрузке будет равно падению напряжения на стабилитроне.

Читайте также

Светодиоды диод с простым P-N переходом, испускающий свет, когда через него проходит ток

Туннельный диод диод, характеристики которого отличаются от характеристик обычного диода

Фотодиод светочувствительный диод, который использует энергию света для создания напряжения

Тетрод диод с четырьмя элементами: катод, анод, управляющая сетка и сетка-экран

Триод электронная лампа с тремя элементами: катод, анод и управляющая сетка

Стабилитрон (диод Зенера)

Стабилитрон (диод Зенера) — полупроводниковый диод, предназначенный для стабилизации напряжения в источниках питания. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов(примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).

В основе работы стабилитрона лежат два механизма:

  • Лавинный пробой p-n перехода
  • Туннельный пробой p-n перехода (Эффект Зенера в англоязычной литературе)

Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом, выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения.

Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.

Виды стабилитронов:

  • прецизионные — обладают повышенной стабильностью напряжения стабилизации, для них вводятся дополнительные нормы на временную нестабильность напряжения и температурный коэффициент напряжения (например: 2С191, КС211, КС520);
  • двусторонние — обеспечивают стабилизацию и ограничение двухполярных напряжений, для них дополнительно нормируется абсолютное значение несимметричности напряжения стабилизации (например: 2С170А, 2С182А);
  • быстродействующие — имеют сниженное значение барьерной ёмкости (десятки пФ) и малую длительность переходного процесса (единицы нс), что позволяет стабилизировать и ограничивать кратковременные импульсы напряжения (например: 2С175Е, КС182Е, 2С211Е).

Существуют микросхемы линейных регуляторов напряжения с двумя выводами, которые имеют такую же схему включения, что и стабилитрон, и зачастую, такое же обозначение на электрических принципиальных схемах.

Параметры

  • Напряжение стабилизации — значение напряжения на стабилитроне при прохождении заданного тока стабилизации. Пробивное напряжение диода, а значит, напряжение стабилизации стабилитрона зависит от толщины p-n-перехода или от удельного сопротивления базы диода. Поэтому разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 В).
  • Температурный коэффициент напряжения стабилизации — величина, определяемая отношением относительного изменения температуры окружающей среды при постоянном токе стабилизации. Значения этого параметра у различных стабилитронов различны. Коэффициент может иметь как положительные так и отрицательные значения для высоковольтных и низковольтных стабилитронов соответственно. Изменение знака соответствует напряжению стабилизации порядка 6 В.
  • Дифференциальное сопротивление — величина, определяемая отношением приращения напряжения стабилизации к вызвавшему его малому приращению тока в заданном диапазоне частот.
  • Максимально допустимая рассеиваемая мощность — максимальная постоянная или средняя мощность, рассеиваемая на стабилитроне, при которой обеспечивается заданная надёжность.

Обозначение стабилитрона на принципиальных схемах

Обозначение двуханодного стабилитрона на принципиальных схемах

Типовая схема включения стабилитрона

Вольт-амперная характеристика нескольких стабилитронов

4 Стаби́стор

Стаби́стор (ранее нормистор) — полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации, которое составляет примерно 0,7 В.

Последовательное соединение двух или трёх стабисторов даёт возможность получить удвоенное или утроенное значение напряжения стабилизации.

Стабилитрон принцип работы

Некоторые типы стабисторов представляют собой единый набор с последовательным соединением отдельных элементов.

Стабисторам присущ отрицательный температурный коэффициент сопротивления, то есть напряжение на стабисторе при неизменном токе уменьшается с увеличением температуры. В связи с этим стабисторы используют для температурной компенсации стабилитронов с положительным коэффициентом напряжения стабилизации.

Основная часть стабисторов — кремниевые диоды. Кроме кремниевых стабисторов промышленность выпускает и селеновые поликристаллические стабисторы, которые отличаются простотой изготовления, а значит, меньшей стоимостью. Однако селеновые стабисторы имеют меньший гарантированный срок службы (1000 ч) и узкий диапазон рабочих температур.

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

Стабилитрон принцип работы

Стабилитрон (диод Зенера) — разновидность полупроводникового диода, работающего при напряжении обратного смещении в режиме пробоя. До момента наступления пробоя через стабилитрон текут совсем незначительные токи утечки, а его сопротивление достаточно высокое. В момент пробоя ток через него резко увеличивается, а его дифференциальное сопротивление снижается до малых величин. За счет этого в режиме пробоя напряжение на стабилитроне поддерживается с неплохой точностью в большом диапазоне обратных токов.

Стабилитрон — сильно легированный кремниевый кристаллический диод, пропускающий ток в прямом направлении так же, как и обычный диод. Он также позволяет току идти в обратном направлении, когда уровень приложенных к полупроводнику потенциалов превышает определенное значение, известное как U пробоя или напряжение колена Зенера.

Историческая справка: Стабилитроны были открыты в начале 50 годов прошлого века, а уже в конце 50-х их стали активно использовать в радиоэлектронной промышленности. Хотя первую модель электрического пробоя озвучил еще в 1933 году Кларенс Зенер, по принципу которого и работает этот полупроводниковый прибор

Устройство сначала назвали в честь американского ученого Кларенса Зенера, который описал в своей работе свойство разрушения электрических изоляторов.

Открытый американским физиком Зенером электрический пробой p-n перехода, связанный непосредственно с туннельным эффектом, явлением просачивания электронов сквозь тонкий слой потенциального барьера, назвали эффектом Зенера

Физическая картина эффекта Зенера состоит в том, что при обратном смещении p-n перехода энергетические зоны начинают блокироваться, и свободные электроны могут перетекать из валентной зоны p-области в зону проводимости n-типа, благодаря электрическому полю, это повышает число свободных носителей заряда, и обратный ток стабилитрона резко увеличивается.

Таким образом, главной задачей стабилитрона является стабилизация напряжения. Электронная промышленность выпускает их на номинальные напряжения от 1,8 В до 400 Вольт, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током.

На принципиальных схемах стабилитроны обозначаются символом похожим на знак полупроводникового диода, с тем лишь небольшим отличием, что их катод изображается в форме русской буквы «Г».

Стабилитроны скрытой интегральной структуры, со стабилизацией 7 В — это самые стабильные и точные твердотельные источники опорного напряжения: лучшие их представители по своим свойствам близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).

Разновидностью стабилитронов можно считать «суппрессоры», «TVS-диоды», их основная задача защита электроаппаратуры.

Стабилитроны вводные понятия и принцип работы

Полупроводниковые стабилитроны появились где-то во второй половине 50-х годов прошлого века. Различают дискретные стабилитроны общего назначения — разной мощности. Прецизионные стабилитроны, в.т.ч термокомпенсированные и со скрытой структурой; Подавители импульсных помех («ограничительные диоды», «суппрессоры»).

Прежде всего, следует помнить о том, что стабилитроны работают только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод будет подан минус, а на катод соответственно плюс. При таком включении через него течет обратный ток (Iобр). Входное U его может изменяться, а на стабилитроне будет изменяться только обратный ток, а вольты на нагрузке останутся постоянными, то есть стабильными. На рисунке ниже показана вольт-амперная характеристика диода Зенера.

Основным принципом работы стабилитрон является то, что он работает на обратной ветви Вольт-амперной характеристики. Как хорошо видно из нее, основными характеристиками стабилитрона является Uст — напряжение стабилизации и Iст (ток стабилизации). Эти данные можно узнать в справочниках по электронике.

В типовом диоде, если к нему приложить Uобр, может возникнуть пробой по одному из трех направлений туннельный, лавинный и пробой из-за теплового разогрева токами утечки. Тепловой пробой кремниевым стабилитронам совершенно не интересен, т.к они проектируются с учетом того, чтобы или туннельный, или лавинный пробой наступали задолго до зарождающейся тенденции к тепловому пробою. Серийные стабилитроны отечественного и зарубежного исполнения в настоящее время изготавливаются в основном из кремния.

Пробой при напряжении ниже 5 В характеризуется проявлением эффекта Зенера, пробой выше 5 Вольт — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, является результатом сочетания двух выше упомянутых эффектов. Напряженность электрического поля в момент пробоя составляет около 30 МВ/м. Пробой стабилитрона осуществляется в умеренно легированных полупроводниках р-проводимости и сильно легированных полупроводниках n. С ростом температуры на стыке снижается срыв стабилитрона и вклад лавинного пробоя возрастает.

Что такое стабилитрон

Когда U обратное, приложенное к стабилитрону, увеличивается и достигает уровня пробоя, то электрический ток проходящий через него может достигать достаточно больших величин. В режиме пробоя стабилитрона дальнейшего увеличение U обратного не будет, только увеличивается ток. Таким образом, постоянное напряжение, сохраняется на стабилитроне при изменении питающего. Поэтому он работает, по принципу регулятора.

Обратная ветвь вольт-амперной характеристики стабилитрона получена с помощью откладывания Uобр оси X и обратного тока вдоль оси Y. Когда Uобр достигает некоторого значения, Iобр увеличивается до гораздо большого уровня, но напряжение на стабилитроне остается постоянным.

Основные справочные параметры и характеристики стабилитронов

Для проектирования и разработки схем с использованием стабилитронов необходимо знать три основных его параметра: Напряжение стабилизации, минимальный токи и предельно-допустимый обратный ток. В отдельных случаях используют величину предельно допустимого прямого тока стабилитрона, если он применяется в схеме переменного тока и должен проводить ток в оба полупериода.

Характеристики стабилитрона

Напряжение стабилизации, это среднее значение между минимальным и максимальным уровнем U стабилизации .

Как работает стабилитрон

В справочниках приводится как главный технический параметр этого элемента. Иногда указываться погрешность U стабилизации , а также минимальный и максимальный уровень.
Минимальный ток стабилизации стабилитрона это токовое значение, при котором происходит обратимый лавинный пробой p-n перехода. Это значение соответствует минимальному Uстабилизации
Максимально допустимый ток стабилизации значение обратного тока, при котором p-n переход может быть подвержен обратимому пробою, без разрушения физической целостности p-n перехода.
Максимально допустимый прямой ток стабилитрона — токовое значение, которое длительное время способен выдержать p-n переход без термического разрушения.
Дифференциальное напряжение стабилитрона rст

На рисунке ниже приведены для примера дифференциальные характеристики различных стабилитронов.

а — зависимость дифференциального сопротивления от прямого тока
б — зависимость изменения напряжения стабилизации от температуры
в — зависимость дифференциального сопротивления от прямого тока

Как видим из графиков, значение дифференциального сопротивления для стабилитрона обратно пропорционально току стабилизации и составляет десятки Ом при рабочих токовых параметрах. Точность значения U стабилизации составляет десятки милливольт в типовом температурном диапазоне.

Максимальная рассеиваемая корпусом стабилитрона мощность, обычно находится в интервале от 0,125 до 1 ватта. Этого, вполне хватает для нормальной работы схемы защиты от импульсных помех и для построения маломощных стабилизаторов.

Применение стабилитронов в радиолюбительской практике

Как мы уже знаем основная область использования стабилитронов — стабилизация постоянного напряжения в источниках питания. В простейших конструкциях линейного параметрического стабилизатора стабилитрон играет роль и источника опорного напряжения, и силового регулирующего элемента. В более сложных схемах ему отводится только задача источника опорного напряжения, а регулирующим элементом является внешний силовой транзистор.

Рассмотрим реальные практические примеры, использования стабилитронов в схемах блоках питания не требующих высокой стабильности напряжения питания.

Стабилитроны обычно используются в роли регуляторов напряжения в различных радиолюбительских схемах, кроме того их можно применять в устройствах защиты от перенапряжений, которые используются в различной бытовой техники, чтобы защитить их от колебаний сети.


Стабилитрон в электронике и практике

Как проверить стабилитрон

Для многих радиолюбительских самоделок необходимы стабилизированные источники питания. Основным их элементом является полупроводниковый прибор, который способен обеспечить постоянное выходное напряжение. Итак, проверить этот радио элемент и его работоспособность и функционирование можно несколькими простыми способами.

Аналог стабилитрона на транзисторах

Если требуется стабилитрон на “нестандартное” напряжение, то поможет транзисторный аналог последнего. Схема полностью подходит для замены и может использоваться для замены стабилитронов в диапазоне напряжений 3-25 вольт.

Стабилитрон

Его назначение, параметры и обозначение на схеме

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора, который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа. Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах.

Стабилитрон

Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус "-". При таком включении через него протекает обратный ток (I обр) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст. (напряжение стабилизации) и I ст. (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Д814Б 2С147А
  • V стаб. мин. – 8 вольт.

  • V стаб. ном. – 9 вольт.

  • V стаб. макс. – 9,5 вольт.

  • I стаб. – 3 – 35 мA.

  • P макс. – 340 мВт.

  • V стаб. мин. – 4,2 вольта.

  • V стаб. ном. – 4,7 вольт.

  • V стаб. макс. – 5,1 вольт.

  • I стаб. – 3 – 60 мА.

  • P макс. – 300 мВт.

Рядом паспортные данные современного стабилитрона (2C147A), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Стабилитрон: подробно простым языком

admin